
The MatTEX package

Romeo Van Snick
romeovs@gmail.com

February 11, 2012

MatTEX is a rudimentary set of LATEX macros and matlab scripts that try to
make your life easier when you are working with calculated matlab or octave
numerical values in a LATEX document.

In stead of copy-pasting the calculated values into the latex document, it is
possible to export them to an intermediary file that can be \input’ed into the
document. Saving you from having to do the job twice if you changed somethng
in the calculations and get a different numerical result.

In what follows I’ll try to desccribe how to use the LATEX macro’s as well as the
matlab scripts that can be used to save the values of you calculated values. But
first, a very short introduction into the nomenclature of the scientific notation.

1 About numbers

The standard (as far as I know) way to scientifically write a number is generally:

(x± sx)× 10e

In this notation several parts are distinguised:

· the significand x

· the uncertianty estimate or error sx

· the exponential e

Usually the uncertainty estimate is rounded off to two significant digits. The
significand is then rounded to match the rounding of the uncertainty estimate,
so that the last two significant digits match the order of magnitude of those of
the uncertainty estimate. The exponent is then adapted so that the order of
magnitude of the total is still correct.

Please visit http://www.chemteam.info/SigFigs/SigFigs.html for a more in
depth discussion on the scientific notation.

I will use the above nomenclature to denote the parts of a number. A number,
consisting of all of the above parts (or a subset of them), will be denoted by the
term value. The name you give this number (i.e. the place you store it in) will
be called a variable.

1

mailto:romeovs@gmail.com
http://www.chemteam.info/SigFigs/SigFigs.html

So if you would type:

>> a = 14e3;

into a matlab or octave prompt, you will have created a variable called a with
value that is 14e3. This value is compromised of a significand 14 and an
exponent 3.

To have a variable with a value that also has an error estimate you should type1:

>> a = [21.3 1.1]*1e3;

To get a value that has a significand 12.1, an exponent 3 and an uncertainty
estimate 1.1.

2 LATEX usage

This section will discuss the correct usage of the LATEX macro’s that are supplied
in this package.

To gain acces to the macro’s put the following in the preamble of your document:

\usepackage{mattex}

This will allow you to use the macro’s explained in the following sections.

2.1 Setting variable values using Mset

To set a variable, you can use following syntax:

\Mset{〈name〉}{〈significand〉}{〈error〉}{〈exponent〉} \Mset

This will set the variable named 〈name〉 to:

(〈significand〉 ± 〈error〉)× 10〈exponent〉

Setting a variable overwrites it’s previous value (if it already had a value).

Some examples:

\Mset{a}{12}
\Mset{b}{123}{24}
\Mset{c}{34}{}{-5}
\Mset{d}{72}{11}{-9}

set the variable a to 12
set the variable b to 123± 14
set the variable c to 34× 10−5

set the variable d to (72± 11)× 10−9

The names can be almost anything, from alphabetic letters such as a, b, . . . to
numbers 0, 1, . . . and multicharacter comdinations of these, e.g. ab10. Also,
underscores, commas and braces are allowed so it’s possible to make a variable
that is called a_crit(2,3). The only thing I know of that is not allowed are,
for obvious reasons, the tex active characters such as \, {, }, [and]. Note that

1This of couse can be done in other ways, yet is the necessary method to add variables and
their error in the matlab scripts that join the MatTEX package.

2

most of these symbols cannot be used for argument names in matlab either, so
this doesn’t matter that much (if you don’t understand this sentence, please
ignore it and read on).

2.2 Getting the values

Dependig on shoch parts of the value of a variable you need, you can use different
macro’s to get them (note that some knowledge of the siunitx package is advised
while reading this section).

In what follows we will assume a variable was set as follows:

\Mset{e}{72}{11}{-9}

\Mval{〈name〉} \Mval

Gives you the significand and exponent of the variable 〈name〉 as if put through
the \nummacro. So for instance \Mval{e} would be equal to typing \num{72e-9}.
The typeset result should be: 72× 10−9.

Here is were the reason d’être of this package lies. You could of course just have
typed in \num{72e-9} in stead of going trough the hassle of first assigning this
value to a variable and then getting it, yet this has a number of disadvantages
compared to the MatTEX approach:

· consistency: will the number you enter be entered consistenly troughout
the document? Chances are you type a mistake or change notation in the
middle of a document.

· what if you made a mistake in the matlab calculations? You’d have to
do a lot of work over again, editing each occurence of the variable in the
document, possibly missing some occureces.

· you really have to do the work of copy pasting tha value over from matlab
yourself. This, to me is perhaps the biggest disadvantage. Using the mattex
package, you can let your latex and matlab files coexist in a makefile and
compile the whole bunch in one go, without the need of you interviening
to copy-paste stuff over.

The name \Mval might seem a bit in contradiction to the nomenclature of this
manual, but it makes sense: you only want the calculated value of a variable2.

\Merr{〈name〉} \Merr

Gives you the same as \Mval but returns the uncertainty estimate instead,
\Merr{e} results in 11.

\Mnum{〈name〉} \Mnum

This gives you the full value of variable 〈name〉. \Mnum{d} would result
in (72± 11)× 10−9.

2here value denotes significand with exponent.

3

\MSI{〈name〉}{〈unit〉} \MSI

This results in the same as \Mnum but allows you to append a unit specified by
〈unit〉, as you would do using the \SI command from the siuntix package. The
rules that apply for the siunitx package appy here too as well as the settings
you may have set for it. \Mnum{d}{\metre} will result in: (72± 11)× 10−9 m.
Please also read the siunitx package documentation.

Note: For all of the above commands the same rule applies: if a certain part
of a variable isn’t set, it wont show up in any of these commands. So if we
were to redifine our value d to \Mval{72}{}{-9} (i.e. without an error estimate
set), \Mval would remain the same, \Merr would result in literally ‘nothing’ and
\Mnum would be equal to \Mval.

2.3 Internal macro’s

You probably won’t need the following macro’s, yet they might come in handy if
you want to define your own stuff based on what MatTEX macro’s can do. The
strings that come out of the following macro’s can be passed on to the siunitx
macro’s for example (which is basically what is done in the macro’s above).

\M{〈name〉} \M

This gets the literal string that is saved under the variable with name 〈name〉.
This macro returns a simple text string such as 72+-11e-9 or 12e-23.

\Mvallit{〈name〉} \Mvallit
Gives the literal string that is saved under the significand and exponent of
variable 〈name〉. For \Mset{e}{93}{9}{6} this results in 93e9.

\Merrlit{〈name〉} \Merrlit

Gives the literal string that is saved under the error with exponent of variable
〈name〉. For \Mset{f}{100}{10}{-9} this results in 10e-9.

2.4 Matrices

Since commas and braces are allowed in the name of a variable, this can be
used to make a matrix with indeces. There is also a matlab script that outputs
matlab arrays to variables that MatTEX -readable (see writemat).

Te generate quick matrices use the following commands:

\preparematrix{〈name〉}{〈N 〉}{〈M 〉} \preparematrix
\usematrix \usematrix

Using the comidination of \preparematrix and \usematrix you can easily build
a matrix. Say we have a 2 by 2 matrix called A. We set the elements using:

4

\Mset{A(1,1)}{1}{0.1}
\Mset{A(1,2)}{2}{0.2}
\Mset{A(2,1)}{3}{0.3}
\Mset{A(2,2)}{4}{0.4}

If the elements are set using the above approach, we can prepare the matrix
for use in a tabular environment using \preparematrix. This macro takes 3
argumentsr. The first argument 〈name〉, which in our case is A, the name of
the matrix. The remaining arguments 〈N 〉 and 〈M 〉 tell \preparematrix that
the size of the matrix is: 〈N 〉 is the number of rows and 〈M 〉 is the number of
colums.

\preparematrixmatrix{A}{2}{2}
\begin{tabular}{cc}

\noheader
\hline
\usematrix
\hline

\end{tabular}

should result in:

A(1,1) A(1,2)
A(2,1) A(2,2)

Of course the above table isn’t what we’d want to see, we need the values of the
elements, not there names. To do this there are three column types defined by
MatTEX :

· v: sets every cell of that column in an \Mval command.

· n: sets every cell of that column in an \Mnum command.

· e: sets every cell of that column in an \Merr command.

This allows us to get the values of the table cells:

\preparematrixmatrix{A}{2}{2}
\begin{tabular}{vn}

\noheader
\hline
\usematrix
\hline

\end{tabular}

would result in:

1 2.0± 0.2
3 4.0± 0.4

Now there might be cells you don’t want to have put trough the respective \M...
command when using one of the above column types, header or footer rows

5

for instance. This is where the \header and \noheader commands come in.
\header \header

Starts the header in a tabular environment. The cells on each row after the
\header macro are not put into the \M... commands even when the v, n or e
columns are used.

\noheader \noheader

Stops the header in a tabular environment. For example:

\begin{tabular}{vn}
\hline \header
Hdr 1 & Hdr 2 \noheader \\
\hline
\usematrix
\hline

\end{tabular}

Which should result in:

Hdr 1 Hdr 2
1 2.0± 0.2
3 4.0± 0.4

2.5 Examples

This example shows how the output is when all information is set for a variable:

\Mset{a}{123}{45}{6} % set a
\Mval{a}
\Merr{a}
\Mnum{a}
\MSI{a}{\kilo\gram}
\M{a}
\Mvallit{a}
\Merrlit{a}

123× 106

45× 106

(123± 45)× 106

(123± 45)× 106 km
123+-45e6
123e6
45e6

The next example shows how the output is when only the value is set for a
variable:

\Mset{b}{78} % set b
\Mval{b}
\Merr{b}
\Mnum{b}
\MSI{b}{\kilo\gram}
\M{b}
\Mvallit{b}
\Merrlit{b}

78

78
78 km
78
78

This example shows you how to make a nice table from some values:

6

\Mset{c(1,1)}{12.1}{1.1}
\Mset{c(2,1)}{13.3}{1.0}
\Mset{c(3,1)}{11.2}{0.9}
\Mset{c(4,1)}{11.9}{1.3}
\Mset{c(5,1)}{12.5}{0.8}

\Mset{c(1,2)}{455}{14}
\Mset{c(2,2)}{457}{12}
\Mset{c(3,2)}{453.2}{7.3}
\Mset{c(4,2)}{455}{13}
\Mset{c(5,2)}{458}{12}

\makematrix{c}{5}{2}
\begin{table}[htp]

\centering
\begin{tabular}{MM}

\hline\header
Head 1 & Head 2 \noheader \\
\hline
\usematrix
\hline \header
Foot 1 & Foot 2\\
\hline

\end{tabular}
\end{table}

Should result in:

Head 1 Head 2
12.1± 1.1 455± 14
13.3± 1.0 457± 12
11.2± 0.9 453.2± 7.3
11.9± 1.3 455± 13
12.5± 0.8 458± 12
Foot 1 Foot 2

2.6 Requirements

Several packages are needed to be able to use MatTEX , they are listed below:

· pgfkeys: this is used to set and save the variables.

· xstring: used to compare strings.

· siunitx: this one should be obvious. If you need this package, you’ll
probably have this loaded already.

· xparse: for the flexible defining of commands.

· array: for the defining of new column types in tabular.

· collcell: also used for the special tabular cells.

7

3 Matlab usage

With MatTEX come several matlab scripts that export variables in the correct
format, so that MatTEX can pick them up.

These scripts were initially written in matlab and then tested in octave, so they
should work on both. Recently, however, I’ve stopped using matlab and have
switched to octave completely. This, however, should pose no porblem since I
come from a matlab background and my syntax hasn’t changed, so I expect the
scripts to work with matlab as well. The main reason why I switched to octave
is that it works as a genuine compiler, so it can be used properly in makefiles
etc. This makes the combination latex-mattex-octave extremely powerful. What
follows is applicable to octave as well as to matlab.

To use the scripts, make sure that the files writevars.m, writeallvars.m,
formatvars.m, writemat.m and parsemopts.m are in a directory that matlab
can read.

writevars(〈file〉,〈opts〉,〈var1 〉,〈var2 〉,. . .) writevars

This function can be used to write variables 〈var1 〉, 〈var2 〉, . . . to a file called 〈file〉.
The variables are automatically formatted is such a fashion that the error (if there
is one) has got two significant digits and that the significand has corresponding
meaningful digits.

Through the optional argument 〈opts〉 you can specify how the data should be
written:

· a: append the variables to the file. This is default behaviour so this option
does not have to explicitly given.

· w: write tto the file instead of appending. This clears the file before writing
to it. This option overwrites the default append behaviour.

· s: be silent. This causes writevars to refrain from writing information to
the prompt and causes it not to write the datestring into the file. This is
generally a good idea when writing from a loop.

· e: force exponent. This causes numbers that have magnitude −1, 0 or 1
to be written with exponent (eg 1e-1 instead of 0.1 and 1e0 instead of
1), which normaly would not be done.

· #: any number greater than or equal to 1. This number denotes the number
of significant digits that will be used for the error (the number of significant
digits on the significand will change accordingly).

These options should be put in a char string (the order doesn’t matter). For
instance ’wse4’ will write the values using 4 significant digits (clearing the
file first), not print any additional information to the screen and use scientific
notation, even when the magnitude is −1, 0 or 1.

The variables must be passed by name in matlab, and they will have the same
name in the LATEXfile as the name they were passed by. To give a value with an
error pass a vector (also by name) containing the value and error.

8

writeallvars(〈file〉,〈opts〉) writeallvars

This basically does the same as writevars yet it searches the workspace for all
the current variables that can be written (i.e. double and size ≤ 2) and writes
them. The same options as for writevars apply.

writemat(〈file〉,〈matrix 〉,〈error matrix 〉) writemat

Writes all the elements of the matlab array 〈matrix 〉 to the file specified in 〈file〉,
with optional errors specified in the array 〈error matrix 〉. After inputting 〈file〉
has been input into LATEXthe variables are available trough:

\Mval{〈matrix 〉(〈i〉,〈j 〉)}

For example the value in the third row and second column of a matrix A is
called by \Mnum{a(3,2)}. This matrix is of the correct form to be used in the
\preparematrix approached described above.

4 Recommended workflow

To get the variables from a matlab session into a LATEXdocument I recommend
using the following workflow:

1. Do the calculations in matlab. You matlab script could look like this:

a = [3.4 2.9 3.5 3.1 4.5];
b = mean(a);
s_b = std(a);
c = [b s_b];
d = exp(c)*100000;

2. Export the variables to a file vars.tex, using one of the above matlab
functions. Do this by adding:

writevars(’file.tex’ ,’a’ ,c,d);

The file file.tex should look like this after you run your script:

\Mset{c}{3.48}{0.62}
\Mset{d}{32.5}{1.9}{5}

3. Input the file by putting \input{file.tex} in the TEXdocument.

4. Use the variables defined in file.tex by using the macro’s described
above. For instance:

\input{file.tex}
\Mnum{c}
\MSI{d}{\metre}

This should result in:

3.48± 0.62
(32.5± 1.9)× 105 m

9

5 Thanks!

A lot of credit goes out to Joseph Wright, the editor of the siunitx package.
I’ve been a devote siunitx user for years now.

I’m also in debt to the poeple at http://tex.stackexchange.com/, who do
their best to answer every single one of my questions.

10

http://tex.stackexchange.com/

Index
\header, 6

\M, 4
\Merr, 3
\Merrlit, 4
\Mnum, 3
\Mset, 2
\MSI, 4
\Mval, 3
\Mvallit, 4

\noheader, 6

\preparematrix, 4

\usematrix, 4

writeallvars, 9
writemat, 9
writevars, 8

11

	About numbers
	LaTeX usage
	Setting variable values using Mset
	Getting the values
	Internal macro's
	Matrices
	Examples
	Requirements

	Matlab usage
	Recommended workflow
	Thanks!

