
qstest.sty

QuinScape Unit Test Package

version 1.7896

David Kastrup∗

2007/02/21

1 Using qstest

The basic idea of qstest is to let the user specify a number of tests that can be
performed either at package load time or while running a separate test file through
LATEX. If you are writing .dtx files, it is a good idea to use Docstrip ‘modules’
for specifying which lines are to be used for testing. The file qstest.dtx from
which both the style file as well as this documentation have been generated has
been done in this manner.

Since the following tests should be ignored when the dtx file is compiled itself,
we use this for skipping over the tests:
1 〈∗dtx〉
2 \iffalse

3 〈/dtx〉
A standalone test file actually does not need a preamble. We can load the

packages with \RequirePackage and just go ahead. Let us demonstrate how to
build such a test file by testing the qstest package itself:
4 〈∗test〉
5 \RequirePackage{qstest}

1.1 Pattern and keyword lists

Check section “Match patterns and targets” of the makematch package for an
explanation of the comma-separated pattern and keyword lists. In a nutshell, both
are lists of arbitrary material that is not expanded but rather used in sanitized
(printable) form. Patterns may contain wildcard characters * matching zero or
more characters, and may be preceded by ! in order to negate a match from an
earlier pattern in the pattern list. Leading spaces before an item in either list are
discarded.

∗David.Kastrup@QuinScape.de, QuinScape GmbH

1

mailto:dak@gnu.org
http://quinscape.de


1.2 Specifying test sets

This macro specifies a pattern list matched to tests’ keyword lists in order to\IncludeTests

determine the tests to be included in this test run. The characters * and ! are
interpreted as explained above.

For example,

\IncludeTests{*, !\cs}

will run all tests except those that have a test keyword of \cs in their list of
keywords. It is a good convention to specify the principal macro or environment
to be tested as the first keyword.

The default is to include all tests. If you are interspersing possibly expensive
tests with your source file, you might want to specify something like

\IncludeTests{*, !expensive}

or even

\IncludeTests{}

in your document preamble, and then possibly override this on the command line
with

latex "\AtBeginDocument{\IncludeTests{*}}\input{file}"

or similar for getting a more complete test.
This defines test patterns that will throw an error when failing. A test that\TestErrors

throws an error will not also add a warning to the standard log file with extension
log since that would be redundant.

The default is \TestErrors{*, !fails}, have all tests that are not marked
as broken throw an error when they fail.

The throwing of errors does not depend on the logging settings (see below) for
the default log file.

This macro receives three arguments. The first is the filename extension of a\LogTests

log file (the extension log is treated specially and uses package warning and info
commands to log test failures and passes, respectively). The second is a keyword
list that indicates which passed tests are to be logged. The third is a keyword list
specifying which failed tests are to be logged. Let us open a file logging everything:
6 \LogTests{lgout}{*}{*}

The choice of lgout is made to make it possible to also have lgin for comparison
purposes: the latter would be an lgout file from a previous, ‘definitive run’,
renamed and checked into version control, for the sake of being able to compare
the log output from different versions.

An already open log file stays open and just changes what is logged. By default,
the standard log (pseudo-)file is already open and logs everything.

Passed and failed tests are not completely symmetric with regard to logging:
test failures are logged and/or indicated on the individual failed assertions, while
a successful test is only logged and/or indicated in summary.

2



You can explicitly close a log file if you want to reread it in the course of\LogClose

processing, or call an executable that would process it. The standard file with
extension log will not actually get closed and flushed if you do this (though
logging would stop on it), but all others might. The actual example for this
follows after the tests. You can reopen a closed log file using \LogTests. It will
then get rewritten from the beginning (with the exception for the standard log
file, of course).

1.3 The tests

Tests are performed within the qstest environment. The environment gets twoqstest

arguments. The first is the name of the test recorded in the log file. The second
is a list of test keywords used for deciding which tests are performed and logged.

Before delving in the details of what kind of tests you can perform in this en-
vironment, we list the various commands that are given patterns and thus control
what kind of tests are performed and logged.

This is the workhorse for checking that values, dimensions, macros and other\Expect

things are just like the test designer would expect them to be.
This macro basically receives two brace-delimited arguments1 and checks that

they are equal after being passed through \def and sanitized. This means that you
can’t normally use # except when followed by a digit (all from 1 to 9 are allowed)
or #. If you precede one of those arguments with * it gets passed through through
\edef instead of \def. There may also be additional tokens like \expandafter
before the opening brace. Note that the combination of \edef and \the〈token
variable〉 can be used to pass through # characters without interpretation. eTEX
provides a similar effect with \unexpanded. So if you want to compare a token
list that may contain isolated hash characters, you can do so by writing something
like
7 〈∗etex〉
8 \begin{qstest}{# in isolation}{\Expect, #, \unexpanded}

9 \toks0{# and #}

10 \Expect*{\the\toks0}*{\unexpanded{# and #}}

11 \end{qstest}

12 〈/etex〉
Since the sanitized version will convert # macro parameters to the string ##, you
might also do this explicitly (and without eTEX) as
13 \begin{qstest}{# in isolation 2}{\Expect, #, \string}

14 \toks0{# and #}

15 \Expect*{\the\toks0}*{\string#\string# and \string#\string#}

16 \end{qstest}

If the token register is guaranteed to only contain ‘proper’ # characters that are
either followed by another # or a digit, you can let the normal interpretation of a
macro parameter for \def kick in and use this as

1The arguments are collected with a token register assignment. This gives several options
for specifying them, including giving a token register without braces around it. It also makes it
possible to precede the balanced text with \expandafter and similar expandable stuff.

3



17 \begin{qstest}{# as macro parameter}{\Expect, #}

18 \toks0{\def\xxx#1{}}

19 \Expect\expandafter{\the\toks0}{\def\xxx#1{}}

20 \end{qstest}

In this manner, #1 is interpreted (and sanitized) as a macro parameter on both
sides, and consequently no doubling of # occurs.

Before the comparison is done, both arguments are sanitized, converted into
printing characters with standardized catcodes throughout2. A word of warning:
both sanitization as well as using \meaning still depend on catcode settings, since
single-letter control sequences (made from a catcode 11 letter) are followed by a
space, and other single-character control sequences are not. For that reason, a
standalone test file for LATEX class or package files will usually need to declare
21 \makeatletter

in order to make ‘@’ a letter, like it usually is in such files.
All of the of the following expectations would turn out correct:

22 \begin{qstest}{Some LaTeX definitions}{\Expect}

23 \Expect*{\meaning\@gobble}{\long macro:#1->}

24 \Expect*{\the\maxdimen}{16383.99998pt}

25 \end{qstest}

Note that there is no way to convert the contents of a box into a printable rendition,
so with regard to boxes, you will be mostly reduced to check that dimensions of a
box meet expectations.

1.4 Expecting ifthen conditions

This is used for evaluating a condition as provided by the ifthen package. See\ExpectIfThen

its docs for the kind of condition that is possible there. You just specify one
argument: the condition that you expect to be true. Here is an example:
26 \RequirePackage{ifthen}

27 \begin{qstest}{\ExpectIfThen}{\ExpectIfThen}

28 \ExpectIfThen{\lengthtest{\maxdimen=16383.99998pt}\AND

29 \maxdimen>1000000000}

30 \end{qstest}

1.5 Dimension ranges

Sometimes we want to check whether some dimension is not exactly like some\InRange

value, but rather in some range. We do this by specifying as the second argument
to \Expect an artificial macro with two arguments specifying the range in question.
This will make \Expect succeed if its first argument is in the range specified by
the two arguments to \InRange.

The range is specified as two TEX dimens. If you use a dimen register and
you want to have a possible error message display the value instead of the dimen
register, you can do so by using the * modifier before \InRange (which will cause

2Spaces get catcode 10, all other characters catcode 12.

4



the value to be expanded before printing and comparing) and put \the before the
dimen register since such register are not expandible by themselves.

Here are some examples:
31 \begin{qstest}{\InRange success}{\InRange}

32 \dimen@=10pt

33 \Expect*{\the\dimen@}\InRange{5pt}{15pt}

34 \Expect*{\the\dimen@}\InRange{10pt}{15pt}

35 \Expect*{\the\dimen@}\InRange{5pt}{10pt}

36 \end{qstest}

37 \begin{qstest}{\InRange failure}{\InRange, fails}

38 \dimen@=10pt \dimen@ii=9.99998pt

39 \Expect*{\the\dimen@}\InRange{5pt}{\dimen@ii}

40 \dimen@ii=10.00002pt

41 \Expect*{\the\dimen@}*\InRange{\the\dimen@ii}{15pt}

42 \end{qstest}

This requires eTEX’s arithmetic and will not be available for versions built without\NearTo

eTEX support. The macro is used in lieu of an expected value and is similar to
\nRange in that it is a pseudovalue to be used for the second argument of \Expect.
It makes \Expect succeed if its own mandatory argument is close to the first
argument from \Expect, where closeness is defined as being within 0.05pt. This
size can be varied by specifying a different one as optional argument to \NearTo.
Here is a test:
43 〈∗etex〉
44 \begin{qstest}{\NearTo success}{\NearTo}

45 \dimen@=10pt

46 \Expect*{\the\dimen@}\NearTo{10.05pt}

47 \Expect*{\the\dimen@}\NearTo{9.95pt}

48 \Expect*{\the\dimen@}\NearTo[2pt]{12pt}

49 \Expect*{\the\dimen@}\NearTo[0.1pt]{9.9pt}

50 \end{qstest}

51 \begin{qstest}{\NearTo failure}{\NearTo, fails}

52 \dimen@=10pt

53 \Expect*{\the\dimen@}\NearTo{10.05002pt}

54 \Expect*{\the\dimen@}\NearTo[1pt]{11.00001pt}

55 \end{qstest}

56 〈/etex〉

1.6 Saved results

The purpose of saved results is to be able to check that the value has remained
the same over passes. Results are given a unique label name and are written to an
auxiliary file where they can be read in for the sake of comparison. One can use
the normal aux file for this purpose, but it might be preferable to use a separate
dedicated file. That way it is possible to input a versioned copy of this file and
have a fixed point of reference rather than the last run.

While the aux file is read in automatically at the beginning of the document,
this does not happen with explicitly named files. You have to read them in yourself,

5



preferably using

\InputIfFileExists{〈filename〉}{}{}

so that no error is thrown when the file does not yet exist.
This gets one argument specifying which file name to use for saving results.\SaveValueFile

If this is specified, a special file is opened. If \SaveValueFile is not called,
the standard aux file is used instead, but then you can only save values after
\begin{document}. \jobname.qsout seems like a useful file name to use here
(the extension out is already in use by PDFTEX).
57 \begin{qstest}{\SavedValue}{\SavedValue}

58 \SaveValueFile{\jobname.qsout}

If this were a real test instead of just documentation, we probably would have
written something like

\InputIfFileExists{\jobname.qsin}{}{}

first in order to read in values from a previous run. The given file would have been
a copy of a previous qsout file, possibly checked into version control in order to
make sure behavior is consistent across runs. If it is an error to not have such a
file (once you have established appropriate testing), you can just write

\input{\jobname.qsin}

instead, of course.
This macro takes no argument and will close a value save file if one is open\CloseValueFile

(using this has no effect if no file has been opened and values are saved on the
aux file instead). We’ll demonstrate use of it later. It is probably only necessary
for testing qstest itself (namely, when you read in saved values in the same run),
or when you do the processing/comparison with a previous version by executing
commands via TEX’s \write18 mechanism.

This gets the label name as first argument. If you are using the non-eTEX-\SaveValue

version, the label name gets sanitized using \string and so can’t deal with non-
character material except at its immediate beginning. The eTEX-version has no
such constraint.

The second argument is the same kind of argument as \Expect expects, namely
something suitable for a token register assignment which is passed through \def
if not preceded by *, and by \edef if preceded by *. The value is written out to
the save file where it can be read in afterwards.

Let us save a few values under different names now:
59 \SaveValue{\InternalSetValue}*{\meaning\InternalSetValue}

60 \SaveValue{\IncludeTests}*{\meaning\IncludeTests}

61 \SaveValue{whatever}*{3.1415}

62 \SaveValue{\maxdimen}*{\the\maxdimen}

A call to this macro is placed into the save file for each call of \SaveValue. The\InternalSetValue

details are not really relevant: in case you run into problems while inputting the
save file, it might be nice to know.

This is used for retrieving a saved value. When used as the second argument\SavedValue

6



to \Expect, it will default to the value of the first argument to \Expect unless it
has been read in from a save file. This behavior is intended for making it easy to
add tests and saved values and not get errors at first, until actually values from a
previous test become available.

Consequently, the following tests will all turn out true before we read in a
file, simply because all the saved values are not yet defined and default to the
expectations:
63 \Expect{Whatever}\SavedValue{\InternalSetValue}

64 \Expect[\IncludeTests]{Whatever else}\SavedValue{\IncludeTests}

65 \Expect[whatever]{2.71828}\SavedValue{whatever}

66 \Expect[undefined]{1.618034}\SavedValue{undefined}

After closing and rereading the file, we’ll need to be more careful with our expecta-
tions, but the last line still works since there still is no saved value for “undefined”.
67 \CloseValueFile

68 \input{\jobname.qsout}

69 \Expect*{\meaning\InternalSetValue}\SavedValue{\InternalSetValue}

70 \Expect[\IncludeTests]*{\meaning\IncludeTests}%

71 \SavedValue{\IncludeTests}

72 \Expect[whatever]{3.1415}\SavedValue{whatever}

73 \Expect[undefined]{1.618034}\SavedValue{undefined}

74 \end{qstest}

Ok, and now lets take the previous tests which succeeded again and let them fail
now that the variables are defined:
75 \begin{qstest}{\SavedValue failure}{\SavedValue,fails}

76 \Expect{Whatever}\SavedValue{\InternalSetValue}

77 \Expect[\IncludeTests]{Whatever else}\SavedValue{\IncludeTests}

78 \Expect{2.71828}\SavedValue{whatever}

79 \end{qstest}

1.7 Checking for call sequences

The environment ExpectCallSequence tells the test system that macros are goingExpectCallSequence

to be called in a certain order and with particular types of arguments.
It gets as an argument the expected call sequence. The call sequence contains

entries that look like a macro definition: starting with the macro name followed
with a macro argument list and a brace-enclosed substitution text that gets exe-
cuted in place of the macro. The argument list given to this macro substitution
will get as its first argument a macro with the original definition of the control
sequence, so you can get at the original arguments for this particular macro call
starting with #2. As a consequence, if you specify no arguments at all and an
empty replacement text for the substitution, the original macro gets executed
with the original arguments.

If you want to get back from the control sequence with the original meaning in\CalledName

#1 to the original macro name, you can use \CalledName on it. This will expand
to the original control sequence name, all in printable characters fit for output or

7



typesetting in a typewriter font (or use in \csname), but without leading backslash
character. You can get to the control sequence itself by using

\csname \CalledName#1\endcsname

and to a printable version including backslash by using

\expandafter \string \csname \CalledName#1\endcsname

Going into more detail, a substitution function is basically defined using

\protected \long \def

so it will not usually get expanded except when hit with \expandafter or actually
being executed. Note that you can’t use this on stuff that has to work at expansion
time. This really works mainly with macros that would also be suitable candidates
for \DeclareRobustCommand.

It is also a bad idea to trace a conditional in this manner: while the substitution
could be made to work when being executed, it will appear like an ordinary macro
when being skipped, disturbing the conditional nesting.

Only macros occuring somewhere in the call sequence will get tracked, other
macros are not affected. The environment can actually get nested, in which case
the outer sequences will get tracked independently from the inner sequence.

This makes it possible to use ExpectCallSequence in order to spoof, for ex-
ample, both input consuming and output producing macros without knowing the
exact relationship of both.

Apart from specifying macro calls, the call sequence specification can contain
special characters that also carry meaning:

‘ If this is set in the call sequence, it places the initial parsing state here. This will
make it an error if non-matching entries occur at the start of the sequence,
which otherwise is effectively enclosed with

.{}*(〈sequence〉).{}*

meaning that nonmatching entries before the first and after the last matching
item of the sequence are ignored by default (this makes it closer to normal
regexp matchers). Since the matching will then start at ‘, you can put
macros before that position that you want to be flagged if they occur in
the sequence, even when they are mentioned nowhere else (macros which
would be an error if actually called). Also available as the more customary
^ character, but that tends to behave worse in LATEX-aware editors.

’ This indicates the last call sequence element to be matched. If any traced
macros appear after this point, an error will get generated. Any immediately
following call sequence entries will not get reached.

. A single dot indicates a wildcard: any of the tracked control sequences might
occur here. You still have to follow this with macro arguments and a braced
replacement text. Wildcards are considered as a fallback when nothing else
matches.

8



(. . . ) Parens may be used for grouping alternatives and/or combining items for
the sake of repeating specifications, of which there are three:

? If a question mark follows either a macro call, wildcard call, parenthesized group,
or call sequence end, the item before it is optional.

+ A plus sign following an item means that this item may be repeated one or more
times.

* An asterisk following an item means that this item may be repeated zero or
more times.

| A vertical bar separates alternatives. Alternatives extend as far as possible, to
the next bar, to an enclosing paren group, or to the start and/or end of the
whole call sequence specification if nothing else intervenes.

Note that opposed to traditional regexp evaluation, no backtracking is employed:
at each point in the call sequence, the next match is immediately chosen and a
choice can (for obvious reasons) not be reverted. It is the task of the user to
specify a call sequence in a sufficiently non-ambiguous manner that will make the
call sequence tracing not pick dead ends.
80 \begin{qstest}{ExpectCallSequence}{ExpectCallSequence}

81 \def\e{e} \def\f{f}

82 \def\g{g} \def\h{h}

83 \begin{ExpectCallSequence}{‘\e#1{%

84 \Expect\expandafter{\csname\CalledName#1\endcsname}{\e }%

85 \Expect*{\meaning#1}{macro:->e}}+\f#1{}’}

86 \e \e \e \e \f

87 \end{ExpectCallSequence}

88 \end{qstest}

1.8 Ending a standalone test file

One finishes a standalone test file by calling the LATEX control sequence \quit.
This stops processing even when we did not actually get into a document. We don’t
actually do this here since there will be further tests in the full documentation
file. However, we will now close the log file we opened for this demonstration.
89 \LogClose{lgout}

90 〈/test〉
And now we will show the resulting standalone log file:
91 Passed: ## in isolation

92 Passed: ## in isolation 2

93 Passed: ## as macro parameter

94 Passed: Some LaTeX definitions

95 Passed: \ExpectIfThen

96 Passed: \InRange success

97 Failed: \InRange failure

98 \Expect: \the \dimen@

9



99 <in [5pt..\dimen@ii ]

100 >10.0pt

101 Failed: \InRange failure

102 \Expect: \the \dimen@

103 <in [10.00002pt..15pt]

104 >10.0pt

105 Passed: \NearTo success

106 Failed: \NearTo failure

107 \Expect: \the \dimen@

108 <near[0.05pt] to 10.05002pt

109 >10.0pt

110 Failed: \NearTo failure

111 \Expect: \the \dimen@

112 <near[1pt] to 11.00001pt

113 >10.0pt

114 Passed: \SavedValue

115 Failed: \SavedValue failure

116 \Expect: Whatever

117 <macro:->\begingroup \let \do \@makeother \dospecials \endlinechar ‘\

118 \catcode ‘\^7 \qst@setsavedii

119 >Whatever

120 Failed: \SavedValue failure

121 \Expect: \IncludeTests

122 <macro:->\MakeMatcher [,]\qst@includecheck

123 >Whatever else

124 Failed: \SavedValue failure

125 \Expect: 2.71828

126 <3.1415

127 >2.71828

128 Passed: ExpectCallSequence

We can now stop skipping if we are compiling the dtx file standalone.
129 〈∗dtx〉
130 \fi

131 〈/dtx〉

10


	Using qstest
	Pattern and keyword lists
	Specifying test sets
	The tests
	Expecting ifthen conditions
	Dimension ranges
	Saved results
	Checking for call sequences
	Ending a standalone test file


