// Pre picture <<<1 import plain_scaling; import plain_bounds; include plain_prethree; // This variable is required by asymptote.sty. pair viewportsize=0; // Horizontal and vertical viewport limits. restricted bool Aspect=true; restricted bool IgnoreAspect=false; struct coords3 { coord[] x,y,z; void erase() { x.delete(); y.delete(); z.delete(); } // Only a shallow copy of the individual elements of x and y // is needed since, once entered, they are never modified. coords3 copy() { coords3 c=new coords3; c.x=copy(x); c.y=copy(y); c.z=copy(z); return c; } void append(coords3 c) { x.append(c.x); y.append(c.y); z.append(c.z); } void push(triple user, triple truesize) { x.push(coord.build(user.x,truesize.x)); y.push(coord.build(user.y,truesize.y)); z.push(coord.build(user.z,truesize.z)); } void push(coord cx, coord cy, coord cz) { x.push(cx); y.push(cy); z.push(cz); } void push(transform3 t, coords3 c1, coords3 c2, coords3 c3) { for(int i=0; i < c1.x.length; ++i) { coord cx=c1.x[i], cy=c2.y[i], cz=c3.z[i]; triple tinf=shiftless(t)*(0,0,0); triple z=t*(cx.user,cy.user,cz.user); triple w=(cx.truesize,cy.truesize,cz.truesize); w=length(w)*unit(shiftless(t)*w); coord Cx,Cy,Cz; Cx.user=z.x; Cy.user=z.y; Cz.user=z.z; Cx.truesize=w.x; Cy.truesize=w.y; Cz.truesize=w.z; push(Cx,Cy,Cz); } } } // scaleT and Legend <<< typedef real scalefcn(real x); struct scaleT { scalefcn T,Tinv; bool logarithmic; bool automin,automax; void operator init(scalefcn T, scalefcn Tinv, bool logarithmic=false, bool automin=false, bool automax=false) { this.T=T; this.Tinv=Tinv; this.logarithmic=logarithmic; this.automin=automin; this.automax=automax; } scaleT copy() { scaleT dest=scaleT(T,Tinv,logarithmic,automin,automax); return dest; } }; scaleT operator init() { scaleT S=scaleT(identity,identity); return S; } typedef void boundRoutine(); struct autoscaleT { scaleT scale; scaleT postscale; real tickMin=-infinity, tickMax=infinity; boundRoutine[] bound; // Optional routines to recompute the bounding box. bool automin=false, automax=false; bool automin() {return automin && scale.automin;} bool automax() {return automax && scale.automax;} real T(real x) {return postscale.T(scale.T(x));} scalefcn T() {return scale.logarithmic ? postscale.T : T;} real Tinv(real x) {return scale.Tinv(postscale.Tinv(x));} autoscaleT copy() { autoscaleT dest=new autoscaleT; dest.scale=scale.copy(); dest.postscale=postscale.copy(); dest.tickMin=tickMin; dest.tickMax=tickMax; dest.bound=copy(bound); dest.automin=(bool) automin; dest.automax=(bool) automax; return dest; } } struct ScaleT { bool set; autoscaleT x; autoscaleT y; autoscaleT z; ScaleT copy() { ScaleT dest=new ScaleT; dest.set=set; dest.x=x.copy(); dest.y=y.copy(); dest.z=z.copy(); return dest; } }; struct Legend { string label; pen plabel; pen p; frame mark; bool above; void operator init(string label, pen plabel=currentpen, pen p=nullpen, frame mark=newframe, bool above=true) { this.label=label; this.plabel=plabel; this.p=(p == nullpen) ? plabel : p; this.mark=mark; this.above=above; } } // >>> // Frame Alignment was here triple min3(pen p) { return linewidth(p)*(-0.5,-0.5,-0.5); } triple max3(pen p) { return linewidth(p)*(0.5,0.5,0.5); } // A function that draws an object to frame pic, given that the transform // from user coordinates to true-size coordinates is t. typedef void drawer(frame f, transform t); // A generalization of drawer that includes the final frame's bounds. // TODO: Add documentation as to what T is. typedef void drawerBound(frame f, transform t, transform T, pair lb, pair rt); struct node { drawerBound d; string key; void operator init(drawerBound d, string key=xasyKEY()) { this.d=d; this.key=key; } } // PairOrTriple <<<1 // This struct is used to represent a userMin/userMax which serves as both a // pair and a triple depending on the context. struct pairOrTriple { real x,y,z; void init() { x = y = z = 0; } }; void copyPairOrTriple(pairOrTriple dest, pairOrTriple src) { dest.x = src.x; dest.y = src.y; dest.z = src.z; } pair operator cast (pairOrTriple a) { return (a.x, a.y); }; triple operator cast (pairOrTriple a) { return (a.x, a.y, a.z); } void write(pairOrTriple a) { write((triple) a); } struct picture { // <<<1 // Nodes <<<2 // Three-dimensional version of drawer and drawerBound: typedef void drawer3(frame f, transform3 t, picture pic, projection P); typedef void drawerBound3(frame f, transform3 t, transform3 T, picture pic, projection P, triple lb, triple rt); struct node3 { drawerBound3 d; string key; void operator init(drawerBound3 d, string key=xasyKEY()) { this.d=d; this.key=key; } } // The functions to do the deferred drawing. node[] nodes; node3[] nodes3; bool uptodate=true; struct bounds3 { coords3 point,min,max; bool exact=true; // An accurate picture bounds is provided by the user. void erase() { point.erase(); min.erase(); max.erase(); } bounds3 copy() { bounds3 b=new bounds3; b.point=point.copy(); b.min=min.copy(); b.max=max.copy(); b.exact=exact; return b; } } bounds bounds; bounds3 bounds3; // Other Fields <<<2 // Transform to be applied to this picture. transform T; transform3 T3; // The internal representation of the 3D user bounds. private pairOrTriple umin, umax; private bool usetx, usety, usetz; ScaleT scale; // Needed by graph Legend[] legend; pair[] clipmax; // Used by beginclip/endclip pair[] clipmin; // The maximum sizes in the x, y, and z directions; zero means no restriction. real xsize=0, ysize=0; real xsize3=0, ysize3=0, zsize3=0; // Fixed unitsizes in the x y, and z directions; zero means use // xsize, ysize, and zsize. real xunitsize=0, yunitsize=0, zunitsize=0; // If true, the x and y directions must be scaled by the same amount. bool keepAspect=true; // A fixed scaling transform. bool fixed; transform fixedscaling; // Init and erase <<<2 void init() { umin.init(); umax.init(); usetx=usety=usetz=false; T3=identity(4); } init(); // Erase the current picture, retaining bounds. void clear() { nodes.delete(); nodes3.delete(); legend.delete(); } // Erase the current picture, retaining any size specification. void erase() { clear(); bounds.erase(); bounds3.erase(); T=identity(); scale=new ScaleT; init(); } // Empty <<<2 bool empty2() { return nodes.length == 0; } bool empty3() { return nodes3.length == 0; } bool empty() { return empty2() && empty3(); } // User min/max <<<2 pair userMin2() {return bounds.userMin(); } pair userMax2() {return bounds.userMax(); } bool userSetx2() { return bounds.userBoundsAreSet(); } bool userSety2() { return bounds.userBoundsAreSet(); } triple userMin3() { return umin; } triple userMax3() { return umax; } bool userSetx3() { return usetx; } bool userSety3() { return usety; } bool userSetz3() { return usetz; } private typedef real binop(real, real); // Helper functions for finding the minimum/maximum of two data, one of // which may not be defined. private static real merge(real x1, bool set1, real x2, bool set2, binop m) { return set1 ? (set2 ? m(x1,x2) : x1) : x2; } private pairOrTriple userExtreme(pair u2(), triple u3(), binop m) { bool setx2 = userSetx2(); bool sety2 = userSety2(); bool setx3 = userSetx3(); bool sety3 = userSety3(); pair p; if (setx2 || sety2) p = u2(); triple t = u3(); pairOrTriple r; r.x = merge(p.x, setx2, t.x, setx3, m); r.y = merge(p.y, sety2, t.y, sety3, m); r.z = t.z; return r; } // The combination of 2D and 3D data. pairOrTriple userMin() { return userExtreme(userMin2, userMin3, min); } pairOrTriple userMax() { return userExtreme(userMax2, userMax3, max); } bool userSetx() { return userSetx2() || userSetx3(); } bool userSety() { return userSety2() || userSety3(); } bool userSetz() = userSetz3; // Functions for setting the user bounds. void userMinx3(real x) { umin.x=x; usetx=true; } void userMiny3(real y) { umin.y=y; usety=true; } void userMinz3(real z) { umin.z=z; usetz=true; } void userMaxx3(real x) { umax.x=x; usetx=true; } void userMaxy3(real y) { umax.y=y; usety=true; } void userMaxz3(real z) { umax.z=z; usetz=true; } void userMinx2(real x) { bounds.alterUserBound("minx", x); } void userMinx(real x) { userMinx2(x); userMinx3(x); } void userMiny2(real y) { bounds.alterUserBound("miny", y); } void userMiny(real y) { userMiny2(y); userMiny3(y); } void userMaxx2(real x) { bounds.alterUserBound("maxx", x); } void userMaxx(real x) { userMaxx2(x); userMaxx3(x); } void userMaxy2(real y) { bounds.alterUserBound("maxy", y); } void userMaxy(real y) { userMaxy2(y); userMaxy3(y); } void userMinz(real z) = userMinz3; void userMaxz(real z) = userMaxz3; void userCorners3(triple c000, triple c001, triple c010, triple c011, triple c100, triple c101, triple c110, triple c111) { umin.x = min(c000.x,c001.x,c010.x,c011.x,c100.x,c101.x,c110.x,c111.x); umin.y = min(c000.y,c001.y,c010.y,c011.y,c100.y,c101.y,c110.y,c111.y); umin.z = min(c000.z,c001.z,c010.z,c011.z,c100.z,c101.z,c110.z,c111.z); umax.x = max(c000.x,c001.x,c010.x,c011.x,c100.x,c101.x,c110.x,c111.x); umax.y = max(c000.y,c001.y,c010.y,c011.y,c100.y,c101.y,c110.y,c111.y); umax.z = max(c000.z,c001.z,c010.z,c011.z,c100.z,c101.z,c110.z,c111.z); } // Cache the current user-space bounding box x coodinates void userBoxX3(real min, real max, binop m=min, binop M=max) { if (usetx) { umin.x=m(umin.x,min); umax.x=M(umax.x,max); } else { umin.x=min; umax.x=max; usetx=true; } } // Cache the current user-space bounding box y coodinates void userBoxY3(real min, real max, binop m=min, binop M=max) { if (usety) { umin.y=m(umin.y,min); umax.y=M(umax.y,max); } else { umin.y=min; umax.y=max; usety=true; } } // Cache the current user-space bounding box z coodinates void userBoxZ3(real min, real max, binop m=min, binop M=max) { if (usetz) { umin.z=m(umin.z,min); umax.z=M(umax.z,max); } else { umin.z=min; umax.z=max; usetz=true; } } // Cache the current user-space bounding box void userBox3(triple min, triple max) { userBoxX3(min.x,max.x); userBoxY3(min.y,max.y); userBoxZ3(min.z,max.z); } // Add drawer <<<2 void add(drawerBound d, bool exact=false, bool above=true) { uptodate=false; if(!exact) bounds.exact=false; if(above) nodes.push(node(d)); else nodes.insert(0,node(d)); } // Faster implementation of most common case. void addExactAbove(drawerBound d) { uptodate=false; nodes.push(node(d)); } void add(drawer d, bool exact=false, bool above=true) { add(new void(frame f, transform t, transform T, pair, pair) { d(f,t*T); },exact,above); } void add(drawerBound3 d, bool exact=false, bool above=true) { uptodate=false; if(!exact) bounds.exact=false; if(above) nodes3.push(node3(d)); else nodes3.insert(0,node3(d)); } void add(drawer3 d, bool exact=false, bool above=true) { add(new void(frame f, transform3 t, transform3 T, picture pic, projection P, triple, triple) { d(f,t*T,pic,P); },exact,above); } // Clip <<<2 void clip(pair min, pair max, drawer d, bool exact=false) { bounds.clip(min, max); this.add(d,exact); } void clip(pair min, pair max, drawerBound d, bool exact=false) { bounds.clip(min, max); this.add(d,exact); } // Add sizing <<<2 // Add a point to the sizing. void addPoint(pair user, pair truesize=0) { bounds.addPoint(user,truesize); //userBox(user,user); } // Add a point to the sizing, accounting also for the size of the pen. void addPoint(pair user, pair truesize=0, pen p) { addPoint(user,truesize+min(p)); addPoint(user,truesize+max(p)); } void addPoint(triple user, triple truesize=(0,0,0)) { bounds3.point.push(user,truesize); userBox3(user,user); } void addPoint(triple user, triple truesize=(0,0,0), pen p) { addPoint(user,truesize+min3(p)); addPoint(user,truesize+max3(p)); } // Add a box to the sizing. void addBox(pair userMin, pair userMax, pair trueMin=0, pair trueMax=0) { bounds.addBox(userMin, userMax, trueMin, trueMax); } void addBox(triple userMin, triple userMax, triple trueMin=(0,0,0), triple trueMax=(0,0,0)) { bounds3.min.push(userMin,trueMin); bounds3.max.push(userMax,trueMax); userBox3(userMin,userMax); } // For speed reason, we unravel the addPath routines from bounds. This // avoids an extra function call. from bounds unravel addPath; // Size commands <<<2 void size(real x, real y=x, bool keepAspect=this.keepAspect) { if(!empty()) uptodate=false; xsize=x; ysize=y; this.keepAspect=keepAspect; } void size3(real x, real y=x, real z=y, bool keepAspect=this.keepAspect) { if(!empty3()) uptodate=false; xsize3=x; ysize3=y; zsize3=z; this.keepAspect=keepAspect; } void unitsize(real x, real y=x, real z=y) { uptodate=false; xunitsize=x; yunitsize=y; zunitsize=z; } // min/max of picture <<<2 // Calculate the min for the final frame, given the coordinate transform. pair min(transform t) { return bounds.min(t); } // Calculate the max for the final frame, given the coordinate transform. pair max(transform t) { return bounds.max(t); } // Calculate the min for the final frame, given the coordinate transform. triple min(transform3 t) { if(bounds3.min.x.length == 0 && bounds3.point.x.length == 0 && bounds3.max.x.length == 0) return (0,0,0); triple a=t*(1,1,1)-t*(0,0,0), b=t*(0,0,0); scaling xs=scaling.build(a.x,b.x); scaling ys=scaling.build(a.y,b.y); scaling zs=scaling.build(a.z,b.z); return (min(min(min(infinity,xs,bounds3.point.x),xs,bounds3.min.x), xs,bounds3.max.x), min(min(min(infinity,ys,bounds3.point.y),ys,bounds3.min.y), ys,bounds3.max.y), min(min(min(infinity,zs,bounds3.point.z),zs,bounds3.min.z), zs,bounds3.max.z)); } // Calculate the max for the final frame, given the coordinate transform. triple max(transform3 t) { if(bounds3.min.x.length == 0 && bounds3.point.x.length == 0 && bounds3.max.x.length == 0) return (0,0,0); triple a=t*(1,1,1)-t*(0,0,0), b=t*(0,0,0); scaling xs=scaling.build(a.x,b.x); scaling ys=scaling.build(a.y,b.y); scaling zs=scaling.build(a.z,b.z); return (max(max(max(-infinity,xs,bounds3.point.x),xs,bounds3.min.x), xs,bounds3.max.x), max(max(max(-infinity,ys,bounds3.point.y),ys,bounds3.min.y), ys,bounds3.max.y), max(max(max(-infinity,zs,bounds3.point.z),zs,bounds3.min.z), zs,bounds3.max.z)); } void append(coords3 point, coords3 min, coords3 max, transform3 t, bounds3 bounds) { // Add the coord info to this picture. if(t == identity4) { point.append(bounds.point); min.append(bounds.min); max.append(bounds.max); } else { point.push(t,bounds.point,bounds.point,bounds.point); // Add in all 8 corner points, to properly size cuboid pictures. point.push(t,bounds.min,bounds.min,bounds.min); point.push(t,bounds.min,bounds.min,bounds.max); point.push(t,bounds.min,bounds.max,bounds.min); point.push(t,bounds.min,bounds.max,bounds.max); point.push(t,bounds.max,bounds.min,bounds.min); point.push(t,bounds.max,bounds.min,bounds.max); point.push(t,bounds.max,bounds.max,bounds.min); point.push(t,bounds.max,bounds.max,bounds.max); } } // Scaling and Fit <<<2 // Returns the transform for turning user-space pairs into true-space pairs. transform scaling(real xsize, real ysize, bool keepAspect=true, bool warn=true) { bounds b = (T == identity()) ? this.bounds : T * this.bounds; return b.scaling(xsize, ysize, xunitsize, yunitsize, keepAspect, warn); } transform scaling(bool warn=true) { return scaling(xsize,ysize,keepAspect,warn); } // Returns the transform for turning user-space pairs into true-space triples. transform3 scaling(real xsize, real ysize, real zsize, bool keepAspect=true, bool warn=true) { if(xsize == 0 && xunitsize == 0 && ysize == 0 && yunitsize == 0 && zsize == 0 && zunitsize == 0) return identity(4); coords3 Coords; append(Coords,Coords,Coords,T3,bounds3); real sx; if(xunitsize == 0) { if(xsize != 0) sx=calculateScaling("x",Coords.x,xsize,warn); } else sx=xunitsize; real sy; if(yunitsize == 0) { if(ysize != 0) sy=calculateScaling("y",Coords.y,ysize,warn); } else sy=yunitsize; real sz; if(zunitsize == 0) { if(zsize != 0) sz=calculateScaling("z",Coords.z,zsize,warn); } else sz=zunitsize; if(sx == 0) { sx=max(sy,sz); if(sx == 0) return identity(4); } if(sy == 0) sy=max(sz,sx); if(sz == 0) sz=max(sx,sy); if(keepAspect && (xunitsize == 0 || yunitsize == 0 || zunitsize == 0)) return scale3(min(sx,sy,sz)); else return scale(sx,sy,sz); } transform3 scaling3(bool warn=true) { return scaling(xsize3,ysize3,zsize3,keepAspect,warn); } frame fit(transform t, transform T0=T, pair m, pair M) { frame f; for(node n : nodes) { xasyKEY(n.key); n.d(f,t,T0,m,M); } return f; } frame fit3(transform3 t, transform3 T0=T3, picture pic, projection P, triple m, triple M) { frame f; for(node3 n : nodes3) { xasyKEY(nodes3[0].key); n.d(f,t,T0,pic,P,m,M); } return f; } // Returns a rigid version of the picture using t to transform user coords // into truesize coords. frame fit(transform t) { return fit(t,min(t),max(t)); } frame fit3(transform3 t, picture pic, projection P) { return fit3(t,pic,P,min(t),max(t)); } // Add drawer wrappers <<<2 void add(void d(picture, transform), bool exact=false) { add(new void(frame f, transform t) { picture opic=new picture; d(opic,t); add(f,opic.fit(identity())); },exact); } void add(void d(picture, transform3), bool exact=false, bool above=true) { add(new void(frame f, transform3 t, picture pic2, projection P) { picture opic=new picture; d(opic,t); add(f,opic.fit3(identity4,pic2,P)); },exact,above); } void add(void d(picture, transform3, transform3, triple, triple), bool exact=false, bool above=true) { add(new void(frame f, transform3 t, transform3 T, picture pic2, projection P, triple lb, triple rt) { picture opic=new picture; d(opic,t,T,lb,rt); add(f,opic.fit3(identity4,pic2,P)); },exact,above); } // More scaling <<<2 frame scaled() { frame f=fit(fixedscaling); pair d=size(f); static real epsilon=100*realEpsilon; if(d.x > xsize*(1+epsilon)) warning("xlimit","frame exceeds xlimit: "+(string) d.x+" > "+ (string) xsize); if(d.y > ysize*(1+epsilon)) warning("ylimit","frame exceeds ylimit: "+(string) d.y+" > "+ (string) ysize); return f; } // Calculate additional scaling required if only an approximate picture // size estimate is available. transform scale(frame f, real xsize=this.xsize, real ysize=this.ysize, bool keepaspect=this.keepAspect) { if(bounds.exact) return identity(); pair m=min(f); pair M=max(f); real width=M.x-m.x; real height=M.y-m.y; real xgrow=xsize == 0 || width == 0 ? 1 : xsize/width; real ygrow=ysize == 0 || height == 0 ? 1 : ysize/height; if(keepAspect) { real[] grow; if(xsize > 0) grow.push(xgrow); if(ysize > 0) grow.push(ygrow); return scale(grow.length == 0 ? 1 : min(grow)); } else return scale(xgrow,ygrow); } // Calculate additional scaling required if only an approximate picture // size estimate is available. transform3 scale3(frame f, real xsize3=this.xsize3, real ysize3=this.ysize3, real zsize3=this.zsize3, bool keepaspect=this.keepAspect) { if(bounds3.exact) return identity(4); triple m=min3(f); triple M=max3(f); real width=M.x-m.x; real height=M.y-m.y; real depth=M.z-m.z; real xgrow=xsize3 == 0 || width == 0 ? 1 : xsize3/width; real ygrow=ysize3 == 0 || height == 0 ? 1 : ysize3/height; real zgrow=zsize3 == 0 || depth == 0 ? 1 : zsize3/depth; if(keepAspect) { real[] grow; if(xsize3 > 0) grow.push(xgrow); if(ysize3 > 0) grow.push(ygrow); if(zsize3 > 0) grow.push(zgrow); return scale3(grow.length == 0 ? 1 : min(grow)); } else return scale(xgrow,ygrow,zgrow); } // calculateTransform with scaling <<<2 // Return the transform that would be used to fit the picture to a frame transform calculateTransform(real xsize, real ysize, bool keepAspect=true, bool warn=true) { transform t=scaling(xsize,ysize,keepAspect,warn); return scale(fit(t),xsize,ysize,keepAspect)*t; } transform calculateTransform(bool warn=true) { if(fixed) return fixedscaling; return calculateTransform(xsize,ysize,keepAspect,warn); } transform3 calculateTransform3(real xsize=xsize3, real ysize=ysize3, real zsize=zsize3, bool keepAspect=true, bool warn=true, projection P=currentprojection) { transform3 t=scaling(xsize,ysize,zsize,keepAspect,warn); return scale3(fit3(t,null,P),keepAspect)*t; } // min/max with xsize and ysize <<<2 // NOTE: These are probably very slow as implemented. pair min(real xsize=this.xsize, real ysize=this.ysize, bool keepAspect=this.keepAspect, bool warn=true) { return min(calculateTransform(xsize,ysize,keepAspect,warn)); } pair max(real xsize=this.xsize, real ysize=this.ysize, bool keepAspect=this.keepAspect, bool warn=true) { return max(calculateTransform(xsize,ysize,keepAspect,warn)); } triple min3(real xsize=this.xsize3, real ysize=this.ysize3, real zsize=this.zsize3, bool keepAspect=this.keepAspect, bool warn=true, projection P) { return min(calculateTransform3(xsize,ysize,zsize,keepAspect,warn,P)); } triple max3(real xsize=this.xsize3, real ysize=this.ysize3, real zsize=this.zsize3, bool keepAspect=this.keepAspect, bool warn=true, projection P) { return max(calculateTransform3(xsize,ysize,zsize,keepAspect,warn,P)); } // More Fitting <<<2 // Returns the 2D picture fit to the requested size. frame fit2(real xsize=this.xsize, real ysize=this.ysize, bool keepAspect=this.keepAspect) { if(fixed) return scaled(); if(empty2()) return newframe; transform t=scaling(xsize,ysize,keepAspect); frame f=fit(t); transform s=scale(f,xsize,ysize,keepAspect); if(s == identity()) return f; return fit(s*t); } static frame fitter(string,picture,string,real,real,bool,bool,string,string, light,projection); frame fit(string prefix="", string format="", real xsize=this.xsize, real ysize=this.ysize, bool keepAspect=this.keepAspect, bool view=false, string options="", string script="", light light=currentlight, projection P=currentprojection) { return fitter == null ? fit2(xsize,ysize,keepAspect) : fitter(prefix,this,format,xsize,ysize,keepAspect,view,options,script, light,P); } // Fit a 3D picture. frame fit3(projection P=currentprojection) { if(settings.render == 0) return fit(P); if(fixed) return scaled(); if(empty3()) return newframe; transform3 t=scaling(xsize3,ysize3,zsize3,keepAspect); frame f=fit3(t,null,P); transform3 s=scale3(f,xsize3,ysize3,zsize3,keepAspect); if(s == identity4) return f; return fit3(s*t,null,P); } // In case only an approximate picture size estimate is available, return the // fitted frame slightly scaled (including labels and true size distances) // so that it precisely meets the given size specification. frame scale(real xsize=this.xsize, real ysize=this.ysize, bool keepAspect=this.keepAspect) { frame f=fit(xsize,ysize,keepAspect); transform s=scale(f,xsize,ysize,keepAspect); if(s == identity()) return f; return s*f; } // Copying <<<2 // Copies enough information to yield the same userMin/userMax. void userCopy2(picture pic) { userMinx2(pic.userMin2().x); userMiny2(pic.userMin2().y); userMaxx2(pic.userMax2().x); userMaxy2(pic.userMax2().y); } void userCopy3(picture pic) { copyPairOrTriple(umin, pic.umin); copyPairOrTriple(umax, pic.umax); usetx=pic.usetx; usety=pic.usety; usetz=pic.usetz; } void userCopy(picture pic) { userCopy2(pic); userCopy3(pic); } // Copies the drawing information, but not the sizing information into a new // picture. Fitting this picture will not scale as the original picture would. picture drawcopy() { picture dest=new picture; dest.nodes=copy(nodes); dest.nodes3=copy(nodes3); dest.T=T; dest.T3=T3; // TODO: User bounds are sizing info, which probably shouldn't be part of // a draw copy. Should we move this down to copy()? dest.userCopy3(this); dest.scale=scale.copy(); dest.legend=copy(legend); return dest; } // A deep copy of this picture. Modifying the copied picture will not affect // the original. picture copy() { picture dest=drawcopy(); dest.uptodate=uptodate; dest.bounds=bounds.copy(); dest.bounds3=bounds3.copy(); dest.xsize=xsize; dest.ysize=ysize; dest.xsize3=xsize; dest.ysize3=ysize3; dest.zsize3=zsize3; dest.keepAspect=keepAspect; dest.xunitsize=xunitsize; dest.yunitsize=yunitsize; dest.zunitsize=zunitsize; dest.fixed=fixed; dest.fixedscaling=fixedscaling; return dest; } // Helper function for defining transformed pictures. Do not call it // directly. picture transformed(transform t) { picture dest=drawcopy(); // Replace nodes with a single drawer that realizes the transform. node[] oldnodes = dest.nodes; void drawAll(frame f, transform tt, transform T, pair lb, pair rt) { transform Tt = T*t; for (node n : oldnodes) { xasyKEY(n.key); n.d(f,tt,Tt,lb,rt); } } dest.nodes = new node[] {node(drawAll)}; dest.uptodate=uptodate; dest.bounds=bounds.transformed(t); dest.bounds3=bounds3.copy(); dest.bounds.exact=false; dest.xsize=xsize; dest.ysize=ysize; dest.xsize3=xsize; dest.ysize3=ysize3; dest.zsize3=zsize3; dest.keepAspect=keepAspect; dest.xunitsize=xunitsize; dest.yunitsize=yunitsize; dest.zunitsize=zunitsize; dest.fixed=fixed; dest.fixedscaling=fixedscaling; return dest; } // Add Picture <<<2 // Add a picture to this picture, such that the user coordinates will be // scaled identically when fitted void add(picture src, bool group=true, filltype filltype=NoFill, bool above=true) { // Copy the picture. Only the drawing function closures are needed, so we // only copy them. This needs to be a deep copy, as src could later have // objects added to it that should not be included in this picture. if(src == this) abort("cannot add picture to itself"); uptodate=false; picture srcCopy=src.drawcopy(); // Draw by drawing the copied picture. if(srcCopy.nodes.length > 0) { nodes.push(node(new void(frame f, transform t, transform T, pair m, pair M) { add(f,srcCopy.fit(t,T*srcCopy.T,m,M),group,filltype,above); })); } if(srcCopy.nodes3.length > 0) { nodes3.push(node3(new void(frame f, transform3 t, transform3 T3, picture pic, projection P, triple m, triple M) { add(f,srcCopy.fit3(t,T3*srcCopy.T3,pic,P,m,M),group,above); })); } legend.append(src.legend); if(src.usetx) userBoxX3(src.umin.x,src.umax.x); if(src.usety) userBoxY3(src.umin.y,src.umax.y); if(src.usetz) userBoxZ3(src.umin.z,src.umax.z); bounds.append(srcCopy.T, src.bounds); //append(bounds.point,bounds.min,bounds.max,srcCopy.T,src.bounds); append(bounds3.point,bounds3.min,bounds3.max,srcCopy.T3,src.bounds3); //if(!src.bounds.exact) bounds.exact=false; if(!src.bounds3.exact) bounds3.exact=false; } } // Post Struct <<<1 picture operator * (transform t, picture orig) { return orig.transformed(t); } picture operator * (transform3 t, picture orig) { picture pic=orig.copy(); pic.T3=t*pic.T3; triple umin=pic.userMin3(), umax=pic.userMax3(); pic.userCorners3(t*umin, t*(umin.x,umin.y,umax.z), t*(umin.x,umax.y,umin.z), t*(umin.x,umax.y,umax.z), t*(umax.x,umin.y,umin.z), t*(umax.x,umin.y,umax.z), t*(umax.x,umax.y,umin.z), t*umax); pic.bounds3.exact=false; return pic; } picture currentpicture; void size(picture pic=currentpicture, real x, real y=x, bool keepAspect=pic.keepAspect) { pic.size(x,y,keepAspect); } void size(picture pic=currentpicture, transform t) { if(pic.empty3()) { pair z=size(pic.fit(t)); pic.size(z.x,z.y); } } void size3(picture pic=currentpicture, real x, real y=x, real z=y, bool keepAspect=pic.keepAspect) { pic.size3(x,y,z,keepAspect); } void unitsize(picture pic=currentpicture, real x, real y=x, real z=y) { pic.unitsize(x,y,z); } void size(picture pic=currentpicture, real xsize, real ysize, pair min, pair max) { pair size=max-min; pic.unitsize(size.x != 0 ? xsize/size.x : 0, size.y != 0 ? ysize/size.y : 0); } void size(picture dest, picture src) { dest.size(src.xsize,src.ysize,src.keepAspect); dest.size3(src.xsize3,src.ysize3,src.zsize3,src.keepAspect); dest.unitsize(src.xunitsize,src.yunitsize,src.zunitsize); } pair min(picture pic, bool user=false) { transform t=pic.calculateTransform(); pair z=pic.min(t); return user ? inverse(t)*z : z; } pair max(picture pic, bool user=false) { transform t=pic.calculateTransform(); pair z=pic.max(t); return user ? inverse(t)*z : z; } pair size(picture pic, bool user=false) { transform t=pic.calculateTransform(); pair M=pic.max(t); pair m=pic.min(t); if(!user) return M-m; t=inverse(t); return t*M-t*m; } // Frame Alignment <<< pair rectify(pair dir) { real scale=max(abs(dir.x),abs(dir.y)); if(scale != 0) dir *= 0.5/scale; dir += (0.5,0.5); return dir; } pair point(frame f, pair dir) { pair m=min(f); pair M=max(f); return m+realmult(rectify(dir),M-m); } path[] align(path[] g, transform t=identity(), pair position, pair align, pen p=currentpen) { if(g.length == 0) return g; pair m=min(g); pair M=max(g); pair dir=rectify(inverse(t)*-align); if(basealign(p) == 1) dir -= (0,m.y/(M.y-m.y)); pair a=m+realmult(dir,M-m); return shift(position+align*labelmargin(p))*t*shift(-a)*g; } // Returns a transform for aligning frame f in the direction align transform shift(frame f, pair align) { return shift(align-point(f,-align)); } // Returns a copy of frame f aligned in the direction align frame align(frame f, pair align) { return shift(f,align)*f; } // >>> pair point(picture pic=currentpicture, pair dir, bool user=true) { pair umin = pic.userMin2(); pair umax = pic.userMax2(); pair z=umin+realmult(rectify(dir),umax-umin); return user ? z : pic.calculateTransform()*z; } pair truepoint(picture pic=currentpicture, pair dir, bool user=true) { transform t=pic.calculateTransform(); pair m=pic.min(t); pair M=pic.max(t); pair z=m+realmult(rectify(dir),M-m); return user ? inverse(t)*z : z; } // Transform coordinate in [0,1]x[0,1] to current user coordinates. pair relative(picture pic=currentpicture, pair z) { return pic.userMin2()+realmult(z,pic.userMax2()-pic.userMin2()); } void add(picture pic=currentpicture, drawer d, bool exact=false) { pic.add(d,exact); } typedef void drawer3(frame f, transform3 t, picture pic, projection P); void add(picture pic=currentpicture, drawer3 d, bool exact=false) { pic.add(d,exact); } void add(picture pic=currentpicture, void d(picture,transform), bool exact=false) { pic.add(d,exact); } void add(picture pic=currentpicture, void d(picture,transform3), bool exact=false) { pic.add(d,exact); } void begingroup(picture pic=currentpicture) { pic.add(new void(frame f, transform) { begingroup(f); },true); } void endgroup(picture pic=currentpicture) { pic.add(new void(frame f, transform) { endgroup(f); },true); } void Draw(picture pic=currentpicture, path g, pen p=currentpen) { pic.add(new void(frame f, transform t) { draw(f,t*g,p); },true); pic.addPath(g,p); } // Default arguments have been removed to increase speed. void _draw(picture pic, path g, pen p, margin margin) { if (size(nib(p)) == 0 && margin==NoMargin) { // Inline the drawerBound wrapper for speed. pic.addExactAbove(new void(frame f, transform t, transform T, pair, pair) { _draw(f,t*T*g,p); }); } else { pic.add(new void(frame f, transform t) { draw(f,margin(t*g,p).g,p); },true); } pic.addPath(g,p); } void Draw(picture pic=currentpicture, explicit path[] g, pen p=currentpen) { // Could optimize this by adding one drawer. for(int i=0; i < g.length; ++i) Draw(pic,g[i],p); } void fill(picture pic=currentpicture, path[] g, pen p=currentpen, bool copy=true) { if(copy) g=copy(g); pic.add(new void(frame f, transform t) { fill(f,t*g,p,false); },true); pic.addPath(g); } void drawstrokepath(picture pic=currentpicture, path g, pen strokepen, pen p=currentpen) { pic.add(new void(frame f, transform t) { draw(f,strokepath(t*g,strokepen),p); },true); pic.addPath(g,p); } void latticeshade(picture pic=currentpicture, path[] g, bool stroke=false, pen fillrule=currentpen, pen[][] p, bool copy=true) { if(copy) { g=copy(g); p=copy(p); } pic.add(new void(frame f, transform t) { latticeshade(f,t*g,stroke,fillrule,p,t,false); },true); pic.addPath(g); } void axialshade(picture pic=currentpicture, path[] g, bool stroke=false, pen pena, pair a, bool extenda=true, pen penb, pair b, bool extendb=true, bool copy=true) { if(copy) g=copy(g); pic.add(new void(frame f, transform t) { axialshade(f,t*g,stroke,pena,t*a,extenda,penb,t*b,extendb,false); },true); pic.addPath(g); } void radialshade(picture pic=currentpicture, path[] g, bool stroke=false, pen pena, pair a, real ra, bool extenda=true, pen penb, pair b, real rb, bool extendb=true, bool copy=true) { if(copy) g=copy(g); pic.add(new void(frame f, transform t) { pair A=t*a, B=t*b; real RA=abs(t*(a+ra)-A); real RB=abs(t*(b+rb)-B); radialshade(f,t*g,stroke,pena,A,RA,extenda,penb,B,RB,extendb,false); },true); pic.addPath(g); } void gouraudshade(picture pic=currentpicture, path[] g, bool stroke=false, pen fillrule=currentpen, pen[] p, pair[] z, int[] edges, bool copy=true) { if(copy) { g=copy(g); p=copy(p); z=copy(z); edges=copy(edges); } pic.add(new void(frame f, transform t) { gouraudshade(f,t*g,stroke,fillrule,p,t*z,edges,false); },true); pic.addPath(g); } void gouraudshade(picture pic=currentpicture, path[] g, bool stroke=false, pen fillrule=currentpen, pen[] p, int[] edges, bool copy=true) { if(copy) { g=copy(g); p=copy(p); edges=copy(edges); } pic.add(new void(frame f, transform t) { gouraudshade(f,t*g,stroke,fillrule,p,edges,false); },true); pic.addPath(g); } void tensorshade(picture pic=currentpicture, path[] g, bool stroke=false, pen fillrule=currentpen, pen[][] p, path[] b=new path[], pair[][] z=new pair[][], bool copy=true) { bool compact=b.length == 0 || b[0] == nullpath; if(copy) { g=copy(g); p=copy(p); if(!compact) b=copy(b); z=copy(z); } pic.add(new void(frame f, transform t) { pair[][] Z=new pair[z.length][]; for(int i=0; i < z.length; ++i) Z[i]=t*z[i]; path[] G=t*g; if(compact) tensorshade(f,G,stroke,fillrule,p,Z,false); else tensorshade(f,G,stroke,fillrule,p,t*b,Z,false); },true); pic.addPath(g); } void tensorshade(frame f, path[] g, bool stroke=false, pen fillrule=currentpen, pen[] p, path b=g.length > 0 ? g[0] : nullpath, pair[] z=new pair[]) { tensorshade(f,g,stroke,fillrule,new pen[][] {p},b, z.length > 0 ? new pair[][] {z} : new pair[][]); } void tensorshade(picture pic=currentpicture, path[] g, bool stroke=false, pen fillrule=currentpen, pen[] p, path b=nullpath, pair[] z=new pair[]) { tensorshade(pic,g,stroke,fillrule,new pen[][] {p},b, z.length > 0 ? new pair[][] {z} : new pair[][]); } // Smoothly shade the regions between consecutive paths of a sequence using a // given array of pens: void draw(picture pic=currentpicture, path[] g, pen fillrule=currentpen, pen[] p) { path[] G; pen[][] P; string differentlengths="arrays have different lengths"; if(g.length != p.length) abort(differentlengths); for(int i=0; i < g.length-1; ++i) { path g0=g[i]; path g1=g[i+1]; if(length(g0) != length(g1)) abort(differentlengths); for(int j=0; j < length(g0); ++j) { G.push(subpath(g0,j,j+1)--reverse(subpath(g1,j,j+1))--cycle); P.push(new pen[] {p[i],p[i],p[i+1],p[i+1]}); } } tensorshade(pic,G,fillrule,P); } void functionshade(picture pic=currentpicture, path[] g, bool stroke=false, pen fillrule=currentpen, string shader, bool copy=true) { if(copy) g=copy(g); pic.add(new void(frame f, transform t) { functionshade(f,t*g,stroke,fillrule,shader); },true); pic.addPath(g); } void filldraw(picture pic=currentpicture, path[] g, pen fillpen=currentpen, pen drawpen=currentpen) { begingroup(pic); fill(pic,g,fillpen); Draw(pic,g,drawpen); endgroup(pic); } void clip(picture pic=currentpicture, path[] g, bool stroke=false, pen fillrule=currentpen, bool copy=true) { if(copy) g=copy(g); pic.clip(min(g), max(g), new void(frame f, transform t) { clip(f,t*g,stroke,fillrule,false); }, true); } void beginclip(picture pic=currentpicture, path[] g, bool stroke=false, pen fillrule=currentpen, bool copy=true) { if(copy) g=copy(g); pic.clipmin.push(min(g)); pic.clipmax.push(max(g)); pic.add(new void(frame f, transform t) { beginclip(f,t*g,stroke,fillrule,false); },true); } void endclip(picture pic=currentpicture) { pair min,max; if (pic.clipmin.length > 0 && pic.clipmax.length > 0) { min = pic.clipmin.pop(); max = pic.clipmax.pop(); } else { // We should probably abort here, since the PostScript output will be // garbage. warning("endclip", "endclip without beginclip"); min = pic.userMin2(); max = pic.userMax2(); } pic.clip(min, max, new void(frame f, transform) { endclip(f); }, true); } void unfill(picture pic=currentpicture, path[] g, bool copy=true) { if(copy) g=copy(g); pic.add(new void(frame f, transform t) { unfill(f,t*g,false); },true); } void filloutside(picture pic=currentpicture, path[] g, pen p=currentpen, bool copy=true) { if(copy) g=copy(g); pic.add(new void(frame f, transform t) { filloutside(f,t*g,p,false); },true); pic.addPath(g); } // Use a fixed scaling to map user coordinates in box(min,max) to the // desired picture size. transform fixedscaling(picture pic=currentpicture, pair min, pair max, pen p=nullpen, bool warn=false) { Draw(pic,min,p+invisible); Draw(pic,max,p+invisible); pic.fixed=true; return pic.fixedscaling=pic.calculateTransform(pic.xsize,pic.ysize, pic.keepAspect); } // Add frame src to frame dest about position with optional grouping. void add(frame dest, frame src, pair position, bool group=false, filltype filltype=NoFill, bool above=true) { add(dest,shift(position)*src,group,filltype,above); } // Add frame src to picture dest about position with optional grouping. void add(picture dest=currentpicture, frame src, pair position=0, bool group=true, filltype filltype=NoFill, bool above=true) { if(is3D(src)) { dest.add(new void(frame f, transform3, picture, projection) { add(f,src); // always add about 3D origin (ignore position) },true); dest.addBox((0,0,0),(0,0,0),min3(src),max3(src)); } else { dest.add(new void(frame f, transform t) { add(f,shift(t*position)*src,group,filltype,above); },true); dest.addBox(position,position,min(src),max(src)); } } // Like add(picture,frame,pair) but extend picture to accommodate frame. void attach(picture dest=currentpicture, frame src, pair position=0, bool group=true, filltype filltype=NoFill, bool above=true) { transform t=dest.calculateTransform(); add(dest,src,position,group,filltype,above); pair s=size(dest.fit(t)); size(dest,dest.xsize != 0 ? s.x : 0,dest.ysize != 0 ? s.y : 0); } // Like add(picture,frame,pair) but align frame in direction align. void add(picture dest=currentpicture, frame src, pair position, pair align, bool group=true, filltype filltype=NoFill, bool above=true) { add(dest,align(src,align),position,group,filltype,above); } // Like add(frame,frame,pair) but align frame in direction align. void add(frame dest, frame src, pair position, pair align, bool group=true, filltype filltype=NoFill, bool above=true) { add(dest,align(src,align),position,group,filltype,above); } // Like add(picture,frame,pair,pair) but extend picture to accommodate frame; void attach(picture dest=currentpicture, frame src, pair position, pair align, bool group=true, filltype filltype=NoFill, bool above=true) { attach(dest,align(src,align),position,group,filltype,above); } // Add a picture to another such that user coordinates in both will be scaled // identically in the shipout. void add(picture dest, picture src, bool group=true, filltype filltype=NoFill, bool above=true) { dest.add(src,group,filltype,above); } void add(picture src, bool group=true, filltype filltype=NoFill, bool above=true) { currentpicture.add(src,group,filltype,above); } // Fit the picture src using the identity transformation (so user // coordinates and truesize coordinates agree) and add it about the point // position to picture dest. void add(picture dest, picture src, pair position, bool group=true, filltype filltype=NoFill, bool above=true) { add(dest,src.fit(identity()),position,group,filltype,above); } void add(picture src, pair position, bool group=true, filltype filltype=NoFill, bool above=true) { add(currentpicture,src,position,group,filltype,above); } // Fill a region about the user-coordinate 'origin'. void fill(pair origin, picture pic=currentpicture, path[] g, pen p=currentpen) { picture opic; fill(opic,g,p); add(pic,opic,origin); } void postscript(picture pic=currentpicture, string s) { pic.add(new void(frame f, transform) { postscript(f,s); },true); } void postscript(picture pic=currentpicture, string s, pair min, pair max) { pic.add(new void(frame f, transform t) { postscript(f,s,t*min,t*max); },true); } void tex(picture pic=currentpicture, string s) { // Force TeX string s to be evaluated immediately (in case it is a macro). frame g; tex(g,s); size(g); pic.add(new void(frame f, transform) { tex(f,s); },true); } void tex(picture pic=currentpicture, string s, pair min, pair max) { frame g; tex(g,s); size(g); pic.add(new void(frame f, transform t) { tex(f,s,t*min,t*max); },true); } void layer(picture pic=currentpicture) { pic.add(new void(frame f, transform) { layer(f); },true); } void erase(picture pic=currentpicture) { pic.uptodate=false; pic.erase(); } void begin(picture pic=currentpicture, string name, string id="", bool visible=true) { if(!latex() || !pdf()) return; settings.twice=true; if(id == "") id=string(++ocgindex); tex(pic,"\begin{ocg}{"+name+"}{"+id+"}{"+(visible ? "1" : "0")+"}"); layer(pic); } void end(picture pic=currentpicture) { if(!latex() || !pdf()) return; tex(pic,"\end{ocg}%"); layer(pic); } // For users of the LaTeX babel package. void deactivatequote(picture pic=currentpicture) { tex(pic,"\catcode`\"=12"); } void activatequote(picture pic=currentpicture) { tex(pic,"\catcode`\"=13"); }