/************ * * This file is part of a tool for producing 3D content in the PRC format. * Copyright (C) 2008 Orest Shardt and * Michail Vidiassov * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see . * *************/ #ifndef __O_PRC_FILE_H #define __O_PRC_FILE_H #include #include #include #include #include #include #include #include #include #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "PRC.h" #include "PRCbitStream.h" #include "writePRC.h" #ifdef HAVE_LIBTIRPC #include "xstream.h" #endif namespace prc { class oPRCFile; class PRCFileStructure; // Map [0,1] to [0,255] inline uint8_t byte(double r) { if(r < 0.0) r=0.0; else if(r > 1.0) r=1.0; int a=(int)(256.0*r); if(a == 256) a=255; return a; } struct RGBAColour { RGBAColour(double r=0.0, double g=0.0, double b=0.0, double a=1.0) : R(r), G(g), B(b), A(a) {} double R,G,B,A; void Set(double r, double g, double b, double a=1.0) { R = r; G = g; B = b; A = a; } bool operator==(const RGBAColour &c) const { return (R==c.R && G==c.G && B==c.B && A==c.A); } bool operator!=(const RGBAColour &c) const { return !(R==c.R && G==c.G && B==c.B && A==c.A); } bool operator<(const RGBAColour &c) const { if(R!=c.R) return (R PRCcolourMap; struct RGBAColourWidth { RGBAColourWidth(double r=0.0, double g=0.0, double b=0.0, double a=1.0, double w=1.0) : R(r), G(g), B(b), A(a), W(w) {} double R,G,B,A,W; bool operator==(const RGBAColourWidth &c) const { return (R==c.R && G==c.G && B==c.B && A==c.A && W==c.W); } bool operator!=(const RGBAColourWidth &c) const { return !(R==c.R && G==c.G && B==c.B && A==c.A && W==c.W); } bool operator<(const RGBAColourWidth &c) const { if(R!=c.R) return (R PRCcolourwidthMap; typedef std::map PRCcolorMap; struct PRCmaterial { PRCmaterial() : alpha(1.0),shininess(1.0), picture_data(NULL), picture_format(KEPRCPicture_BITMAP_RGB_BYTE), picture_width(0), picture_height(0), picture_size(0), picture_replace(false), picture_repeat(false) {} PRCmaterial(const RGBAColour &a, const RGBAColour &d, const RGBAColour &e, const RGBAColour &s, double p, double h, const uint8_t* pic=NULL, EPRCPictureDataFormat picf=KEPRCPicture_BITMAP_RGB_BYTE, uint32_t picw=0, uint32_t pich=0, uint32_t pics=0, bool picreplace=false, bool picrepeat=false) : ambient(a), diffuse(d), emissive(e), specular(s), alpha(p), shininess(h), picture_data(pic), picture_format(picf), picture_width(picw), picture_height(pich), picture_size(pics), picture_replace(picreplace), picture_repeat(picrepeat) { if(picture_size==0) { if (picture_format==KEPRCPicture_BITMAP_RGB_BYTE) picture_size = picture_width*picture_height*3; if (picture_format==KEPRCPicture_BITMAP_RGBA_BYTE) picture_size = picture_width*picture_height*4; if (picture_format==KEPRCPicture_BITMAP_GREY_BYTE) picture_size = picture_width*picture_height*1; if (picture_format==KEPRCPicture_BITMAP_GREYA_BYTE) picture_size = picture_width*picture_height*2; } } RGBAColour ambient,diffuse,emissive,specular; double alpha,shininess; const uint8_t* picture_data; EPRCPictureDataFormat picture_format; uint32_t picture_width; uint32_t picture_height; uint32_t picture_size; bool picture_replace; // replace material color with texture color? if false - just modify bool picture_repeat; // repeat texture? if false - clamp to edge bool operator==(const PRCmaterial &m) const { return (ambient==m.ambient && diffuse==m.diffuse && emissive==m.emissive && specular==m.specular && alpha==m.alpha && shininess==m.shininess && picture_replace==m.picture_replace && picture_repeat==m.picture_repeat && picture_format==m.picture_format && picture_width==m.picture_width && picture_height==m.picture_height && picture_size==m.picture_size && (picture_data==m.picture_data || memcmp(picture_data,m.picture_data,picture_size)==0) ); } bool operator<(const PRCmaterial &m) const { if(ambient!=m.ambient) return (ambient PRCmaterialMap; struct PRCpicture { PRCpicture() : data(NULL), format(KEPRCPicture_BITMAP_RGB_BYTE), width(0), height(0), size(0) {} PRCpicture(const uint8_t* pic, EPRCPictureDataFormat picf, uint32_t picw, uint32_t pich, uint32_t pics=0) : data(pic), format(picf), width(picw), height(pich), size(pics) { if(size==0) { if (format==KEPRCPicture_BITMAP_RGB_BYTE) size = width*height*3; if (format==KEPRCPicture_BITMAP_RGBA_BYTE) size = width*height*4; if (format==KEPRCPicture_BITMAP_GREY_BYTE) size = width*height*1; if (format==KEPRCPicture_BITMAP_GREYA_BYTE) size = width*height*2; } } PRCpicture(const PRCmaterial& m) : data(m.picture_data), format(m.picture_format), width(m.picture_width), height(m.picture_height), size(m.picture_size) {} const uint8_t* data; EPRCPictureDataFormat format; uint32_t width; uint32_t height; uint32_t size; bool operator==(const PRCpicture& p) const { return ( format==p.format && width==p.width && height==p.height && size==p.size && (data==p.data || memcmp(data,p.data,size)==0) ); } bool operator<(const PRCpicture& p) const { if(format!=p.format) return (format PRCpictureMap; struct PRCmaterialgeneric { PRCmaterialgeneric() : alpha(1.0),shininess(1.0) {} PRCmaterialgeneric(const RGBAColour& a, const RGBAColour& d, const RGBAColour& e, const RGBAColour& s, double p, double h) : ambient(a), diffuse(d), emissive(e), specular(s), alpha(p), shininess(h) {} PRCmaterialgeneric(const PRCmaterial& m) : ambient(m.ambient), diffuse(m.diffuse), emissive(m.emissive), specular(m.specular), alpha(m.alpha), shininess(m.shininess) {} RGBAColour ambient,diffuse,emissive,specular; double alpha,shininess; bool operator==(const PRCmaterialgeneric& m) const { return (ambient==m.ambient && diffuse==m.diffuse && emissive==m.emissive && specular==m.specular && alpha==m.alpha && shininess==m.shininess); } bool operator<(const PRCmaterialgeneric& m) const { if(ambient!=m.ambient) return (ambient PRCmaterialgenericMap; struct PRCtexturedefinition { PRCtexturedefinition() : picture_index(m1), picture_replace(false), picture_repeat(false) {} PRCtexturedefinition(uint32_t picindex, bool picreplace=false, bool picrepeat=false) : picture_index(picindex), picture_replace(picreplace), picture_repeat(picrepeat) {} PRCtexturedefinition(uint32_t picindex, const PRCmaterial& m) : picture_index(picindex), picture_replace(m.picture_replace), picture_repeat(m.picture_repeat) {} uint32_t picture_index; bool picture_replace; // replace material color with texture color? if false - just modify bool picture_repeat; // repeat texture? if false - clamp to edge bool operator==(const PRCtexturedefinition& t) const { return (picture_index==t.picture_index && picture_replace==t.picture_replace && picture_repeat==t.picture_repeat); } bool operator<(const PRCtexturedefinition& t) const { if(picture_index!=t.picture_index) return (picture_index PRCtexturedefinitionMap; struct PRCtextureapplication { PRCtextureapplication() : material_generic_index(m1), texture_definition_index(m1) {} PRCtextureapplication(uint32_t matindex, uint32_t texindex) : material_generic_index(matindex), texture_definition_index(texindex) {} uint32_t material_generic_index; uint32_t texture_definition_index; bool operator==(const PRCtextureapplication& t) const { return (material_generic_index==t.material_generic_index && texture_definition_index==t.texture_definition_index); } bool operator<(const PRCtextureapplication& t) const { if(material_generic_index!=t.material_generic_index) return (material_generic_index PRCtextureapplicationMap; struct PRCstyle { PRCstyle() : line_width(0), alpha(1), is_material(false), color_material_index(m1) {} PRCstyle(double linewidth, double alph, bool ismat, uint32_t colindex=m1) : line_width(linewidth), alpha(alph), is_material(ismat), color_material_index(colindex) {} double line_width; double alpha; bool is_material; uint32_t color_material_index; bool operator==(const PRCstyle& s) const { return (line_width==s.line_width && alpha==s.alpha && is_material==s.is_material && color_material_index==s.color_material_index); } bool operator<(const PRCstyle& s) const { if(line_width!=s.line_width) return (line_width PRCstyleMap; struct PRCtessrectangle // rectangle { PRCVector3d vertices[4]; uint32_t style; }; typedef std::vector PRCtessrectangleList; struct PRCtessquad // rectangle { PRCVector3d vertices[4]; RGBAColour colours[4]; }; typedef std::vector PRCtessquadList; /* struct PRCtesstriangle // textured triangle { PRCtesstriangle() : style(m1) {} PRCVector3d vertices[3]; // PRCVector3d normals[3]; // RGBAColour colors[3]; PRCVector2d texcoords[3]; uint32_t style; }; typedef std::vector PRCtesstriangleList; */ struct PRCtessline // polyline { std::vector point; PRCRgbColor color; }; typedef std::list PRCtesslineList; typedef std::map PRCtesslineMap; struct PRCface { PRCface() : transform(NULL), face(NULL) {} uint32_t style; bool transparent; PRCGeneralTransformation3d* transform; PRCFace* face; }; typedef std::vector PRCfaceList; struct PRCcompface { PRCcompface() : face(NULL) {} uint32_t style; bool transparent; PRCCompressedFace* face; }; typedef std::vector PRCcompfaceList; struct PRCwire { PRCwire() : style(m1), transform(NULL), curve(NULL) {} uint32_t style; PRCGeneralTransformation3d* transform; PRCCurve* curve; }; typedef std::vector PRCwireList; typedef std::map > PRCpointsetMap; class PRCoptions { public: double compression; double granularity; bool closed; // render the surface as one-sided; may yield faster rendering bool tess; // use tessellated mesh to store straight patches bool do_break; // bool no_break; // do not render transparent patches as one-faced nodes double crease_angle; // crease angle for meshes PRCoptions(double compression=0.0, double granularity=0.0, bool closed=false, bool tess=false, bool do_break=true, bool no_break=false, double crease_angle=25.8419) : compression(compression), granularity(granularity), closed(closed), tess(tess), do_break(do_break), no_break(no_break), crease_angle(crease_angle) {} }; class PRCgroup { public: PRCgroup() : product_occurrence(NULL), parent_product_occurrence(NULL), part_definition(NULL), parent_part_definition(NULL), transform(NULL) {} PRCgroup(const std::string& name) : product_occurrence(NULL), parent_product_occurrence(NULL), part_definition(NULL), parent_part_definition(NULL), transform(NULL), name(name) {} PRCProductOccurrence *product_occurrence, *parent_product_occurrence; PRCPartDefinition *part_definition, *parent_part_definition; PRCfaceList faces; PRCcompfaceList compfaces; PRCtessrectangleList rectangles; // PRCtesstriangleList triangles; PRCtessquadList quads; PRCtesslineMap lines; PRCwireList wires; PRCpointsetMap points; std::vector pointsets; std::vector polymodels; std::vector polywires; PRCGeneralTransformation3d* transform; std::string name; PRCoptions options; }; void makeFileUUID(PRCUniqueId&); void makeAppUUID(PRCUniqueId&); class PRCUncompressedFile { public: PRCUncompressedFile() : file_size(0), data(NULL) {} PRCUncompressedFile(uint32_t fs, uint8_t *d) : file_size(fs), data(d) {} ~PRCUncompressedFile() { if(data != NULL) delete[] data; } uint32_t file_size; uint8_t *data; void write(std::ostream&) const; uint32_t getSize() const; }; typedef std::deque PRCUncompressedFileList; class PRCStartHeader { public: uint32_t minimal_version_for_read; // PRCVersion uint32_t authoring_version; // PRCVersion PRCUniqueId file_structure_uuid; PRCUniqueId application_uuid; // should be 0 PRCStartHeader() : minimal_version_for_read(PRCVersion), authoring_version(PRCVersion) {} void serializeStartHeader(std::ostream&) const; uint32_t getStartHeaderSize() const; }; class PRCFileStructure : public PRCStartHeader { public: uint32_t number_of_referenced_file_structures; double tessellation_chord_height_ratio; double tessellation_angle_degree; std::string default_font_family_name; std::vector colors; std::vector pictures; PRCUncompressedFileList uncompressed_files; PRCTextureDefinitionList texture_definitions; PRCMaterialList materials; PRCStyleList styles; PRCCoordinateSystemList reference_coordinate_systems; std::vector font_keys_of_font; PRCPartDefinitionList part_definitions; PRCProductOccurrenceList product_occurrences; // PRCMarkupList markups; // PRCAnnotationItemList annotation_entities; double unit; PRCTopoContextList contexts; PRCTessList tessellations; uint32_t sizes[6]; uint8_t *globals_data; PRCbitStream globals_out; // order matters: PRCbitStream must be initialized last uint8_t *tree_data; PRCbitStream tree_out; uint8_t *tessellations_data; PRCbitStream tessellations_out; uint8_t *geometry_data; PRCbitStream geometry_out; uint8_t *extraGeometry_data; PRCbitStream extraGeometry_out; ~PRCFileStructure () { for(PRCUncompressedFileList::iterator it=uncompressed_files.begin(); it!=uncompressed_files.end(); ++it) delete *it; for(PRCTextureDefinitionList::iterator it=texture_definitions.begin(); it!=texture_definitions.end(); ++it) delete *it; for(PRCMaterialList::iterator it=materials.begin(); it!=materials.end(); ++it) delete *it; for(PRCStyleList::iterator it=styles.begin(); it!=styles.end(); ++it) delete *it; for(PRCTopoContextList::iterator it=contexts.begin(); it!=contexts.end(); ++it) delete *it; for(PRCTessList::iterator it=tessellations.begin(); it!=tessellations.end(); ++it) delete *it; for(PRCPartDefinitionList::iterator it=part_definitions.begin(); it!=part_definitions.end(); ++it) delete *it; for(PRCProductOccurrenceList::iterator it=product_occurrences.begin(); it!=product_occurrences.end(); ++it) delete *it; for(PRCCoordinateSystemList::iterator it=reference_coordinate_systems.begin(); it!=reference_coordinate_systems.end(); it++) delete *it; free(globals_data); free(tree_data); free(tessellations_data); free(geometry_data); free(extraGeometry_data); } PRCFileStructure() : number_of_referenced_file_structures(0), tessellation_chord_height_ratio(2000.0),tessellation_angle_degree(40.0), default_font_family_name(""), unit(1), globals_data(NULL),globals_out(globals_data,0), tree_data(NULL),tree_out(tree_data,0), tessellations_data(NULL),tessellations_out(tessellations_data,0), geometry_data(NULL),geometry_out(geometry_data,0), extraGeometry_data(NULL),extraGeometry_out(extraGeometry_data,0) {} void write(std::ostream&); void prepare(); uint32_t getSize(); void serializeFileStructureGlobals(PRCbitStream&); void serializeFileStructureTree(PRCbitStream&); void serializeFileStructureTessellation(PRCbitStream&); void serializeFileStructureGeometry(PRCbitStream&); void serializeFileStructureExtraGeometry(PRCbitStream&); uint32_t addPicture(EPRCPictureDataFormat format, uint32_t size, const uint8_t *picture, uint32_t width=0, uint32_t height=0, std::string name=""); uint32_t addTextureDefinition(PRCTextureDefinition*& pTextureDefinition); uint32_t addRgbColor(const PRCRgbColor &color); uint32_t addRgbColorUnique(const PRCRgbColor &color); uint32_t addMaterialGeneric(PRCMaterialGeneric*& pMaterialGeneric); uint32_t addTextureApplication(PRCTextureApplication*& pTextureApplication); uint32_t addStyle(PRCStyle*& pStyle); uint32_t addPartDefinition(PRCPartDefinition*& pPartDefinition); uint32_t addProductOccurrence(PRCProductOccurrence*& pProductOccurrence); uint32_t addTopoContext(PRCTopoContext*& pTopoContext); uint32_t getTopoContext(PRCTopoContext*& pTopoContext); uint32_t add3DTess(PRC3DTess*& p3DTess); uint32_t add3DWireTess(PRC3DWireTess*& p3DWireTess); /* uint32_t addMarkupTess(PRCMarkupTess*& pMarkupTess); uint32_t addMarkup(PRCMarkup*& pMarkup); uint32_t addAnnotationItem(PRCAnnotationItem*& pAnnotationItem); */ uint32_t addCoordinateSystem(PRCCoordinateSystem*& pCoordinateSystem); uint32_t addCoordinateSystemUnique(PRCCoordinateSystem*& pCoordinateSystem); }; class PRCFileStructureInformation { public: PRCUniqueId UUID; uint32_t reserved; // 0 uint32_t number_of_offsets; uint32_t *offsets; void write(std::ostream&); uint32_t getSize(); }; class PRCHeader : public PRCStartHeader { public : uint32_t number_of_file_structures; PRCFileStructureInformation *fileStructureInformation; uint32_t model_file_offset; uint32_t file_size; // not documented PRCUncompressedFileList uncompressed_files; void write(std::ostream&); uint32_t getSize(); }; typedef std::map PRCtransformMap; inline double X(const double *v) {return v[0];} inline double Y(const double *v) {return v[1];} inline double Z(const double *v) {return v[2];} class oPRCFile { public: oPRCFile(std::ostream &os, double u=1, uint32_t n=1) : number_of_file_structures(n), fileStructures(new PRCFileStructure*[n]), unit(u), modelFile_data(NULL),modelFile_out(modelFile_data,0), fout(NULL),output(os) { for(uint32_t i = 0; i < number_of_file_structures; ++i) { fileStructures[i] = new PRCFileStructure(); fileStructures[i]->minimal_version_for_read = PRCVersion; fileStructures[i]->authoring_version = PRCVersion; makeFileUUID(fileStructures[i]->file_structure_uuid); makeAppUUID(fileStructures[i]->application_uuid); fileStructures[i]->unit = u; } groups.push(PRCgroup()); PRCgroup &group = groups.top(); group.name="root"; group.transform = NULL; group.product_occurrence = new PRCProductOccurrence(group.name); group.parent_product_occurrence = NULL; group.part_definition = new PRCPartDefinition; group.parent_part_definition = NULL; } oPRCFile(const std::string &name, double u=1, uint32_t n=1) : number_of_file_structures(n), fileStructures(new PRCFileStructure*[n]), unit(u), modelFile_data(NULL),modelFile_out(modelFile_data,0), fout(new std::ofstream(name.c_str(), std::ios::out|std::ios::binary|std::ios::trunc)), output(*fout) { for(uint32_t i = 0; i < number_of_file_structures; ++i) { fileStructures[i] = new PRCFileStructure(); fileStructures[i]->minimal_version_for_read = PRCVersion; fileStructures[i]->authoring_version = PRCVersion; makeFileUUID(fileStructures[i]->file_structure_uuid); makeAppUUID(fileStructures[i]->application_uuid); fileStructures[i]->unit = u; } groups.push(PRCgroup()); PRCgroup &group = groups.top(); group.name="root"; group.transform = NULL; group.product_occurrence = new PRCProductOccurrence(group.name); group.parent_product_occurrence = NULL; group.part_definition = new PRCPartDefinition; group.parent_part_definition = NULL; } ~oPRCFile() { for(uint32_t i = 0; i < number_of_file_structures; ++i) delete fileStructures[i]; delete[] fileStructures; if(fout != NULL) delete fout; free(modelFile_data); for(PRCpictureMap::iterator it=pictureMap.begin(); it!=pictureMap.end(); ++it) delete it->first.data; } void begingroup(const char *name, PRCoptions *options=NULL, const double* t=NULL); void endgroup(); std::string lastgroupname; std::vector lastgroupnames; std::string calculate_unique_name(const ContentPRCBase *prc_entity,const ContentPRCBase *prc_occurence); bool finish(); uint32_t getSize(); const uint32_t number_of_file_structures; PRCFileStructure **fileStructures; PRCHeader header; PRCUnit unit; uint8_t *modelFile_data; PRCbitStream modelFile_out; // order matters: PRCbitStream must be initialized last PRCcolorMap colorMap; PRCcolourMap colourMap; PRCcolourwidthMap colourwidthMap; PRCmaterialgenericMap materialgenericMap; PRCtexturedefinitionMap texturedefinitionMap; PRCtextureapplicationMap textureapplicationMap; PRCstyleMap styleMap; PRCpictureMap pictureMap; PRCgroup rootGroup; PRCtransformMap transformMap; std::stack groups; PRCgroup& findGroup(); void doGroup(PRCgroup& group); uint32_t addColor(const PRCRgbColor &color); uint32_t addColour(const RGBAColour &colour); uint32_t addColourWidth(const RGBAColour &colour, double width); uint32_t addLineMaterial(const RGBAColour& c, double width) { return addColourWidth(c,width); } uint32_t addMaterial(const PRCmaterial &material); uint32_t addTransform(PRCGeneralTransformation3d*& transform); uint32_t addTransform(const double* t); uint32_t addTransform(const double origin[3], const double x_axis[3], const double y_axis[3], double scale); template void addPoint(const V P, const RGBAColour &c, double w=1.0) { PRCgroup &group = findGroup(); group.points[addColourWidth(c,w)].push_back(PRCVector3d(X(P),Y(P),Z(P))); } void addPoints(uint32_t n, const double P[][3], const RGBAColour &c, double w=1.0); void addLines(uint32_t nP, const double P[][3], uint32_t nI, const uint32_t PI[], const RGBAColour& c, double w, bool segment_color, uint32_t nC, const RGBAColour C[], uint32_t nCI, const uint32_t CI[]); uint32_t createLines(uint32_t nP, const double P[][3], uint32_t nI, const uint32_t PI[], bool segment_color, uint32_t nC, const RGBAColour C[], uint32_t nCI, const uint32_t CI[]); template void addTriangles(uint32_t nP, const V P[], uint32_t nI, const uint32_t PI[][3], const PRCmaterial &m, uint32_t nN, const V N[], const uint32_t NI[][3], uint32_t nT, const double T[][2], const uint32_t TI[][3], uint32_t nC, const RGBAColour C[], const uint32_t CI[][3], uint32_t nM, const PRCmaterial M[], const uint32_t MI[], double ca) { if(nP==0 || P==NULL || nI==0 || PI==NULL) return; const uint32_t tess_index = createTriangleMesh(nP, P, nI, PI, m, nN, N, NI, nT, T, TI, nC, C, CI, nM, M, MI, ca); useMesh(tess_index,m1); } template uint32_t createTriangleMesh(uint32_t nP, const V P[], uint32_t nI, const uint32_t PI[][3], const PRCmaterial& m, uint32_t nN, const V N[], const uint32_t NI[][3], uint32_t nT, const double T[][2], const uint32_t TI[][3], uint32_t nC, const RGBAColour C[], const uint32_t CI[][3], uint32_t nM, const PRCmaterial M[], const uint32_t MI[], double ca) { const uint32_t style = addMaterial(m); if(M!=NULL && nM>0) { uint32_t* const styles = new uint32_t[nM]; for(uint32_t i=0; i uint32_t createTriangleMesh(uint32_t nP, const V P[], uint32_t nI, const uint32_t PI[][3], const uint32_t style_index, uint32_t nN, const V N[], const uint32_t NI[][3], uint32_t nT, const double T[][2], const uint32_t TI[][3], uint32_t nC, const RGBAColour C[], const uint32_t CI[][3], uint32_t nS, const uint32_t S[], const uint32_t SI[], double ca) { if(nP==0 || P==NULL || nI==0 || PI==NULL) return m1; const bool triangle_color = (nS != 0 && S != NULL && SI != NULL); const bool vertex_color = (nC != 0 && C != NULL && CI != NULL); const bool has_normals = (nN != 0 && N != NULL && NI != NULL); const bool textured = (nT != 0 && T != NULL && TI != NULL); PRC3DTess *tess = new PRC3DTess(); PRCTessFace *tessFace = new PRCTessFace(); tessFace->used_entities_flag = textured ? PRC_FACETESSDATA_TriangleTextured : PRC_FACETESSDATA_Triangle; tessFace->number_of_texture_coordinate_indexes = textured ? 1 : 0; tess->coordinates.reserve(3*nP); for(uint32_t i=0; icoordinates.push_back(X(P[i])); tess->coordinates.push_back(Y(P[i])); tess->coordinates.push_back(Z(P[i])); } if(has_normals) { tess->normal_coordinate.reserve(3*nN); for(uint32_t i=0; inormal_coordinate.push_back(X(N[i])); tess->normal_coordinate.push_back(Y(N[i])); tess->normal_coordinate.push_back(Z(N[i])); } } else tess->crease_angle = ca; if(textured) { tess->texture_coordinate.reserve(2*nT); for(uint32_t i=0; itexture_coordinate.push_back(T[i][0]); tess->texture_coordinate.push_back(T[i][1]); } } tess->triangulated_index.reserve(3*nI+(has_normals?3:0)*nI+(textured?3:0)*nI); for(uint32_t i=0; itriangulated_index.push_back(3*NI[i][0]); if(textured) tess->triangulated_index.push_back(2*TI[i][0]); tess->triangulated_index.push_back(3*PI[i][0]); if(has_normals) tess->triangulated_index.push_back(3*NI[i][1]); if(textured) tess->triangulated_index.push_back(2*TI[i][1]); tess->triangulated_index.push_back(3*PI[i][1]); if(has_normals) tess->triangulated_index.push_back(3*NI[i][2]); if(textured) tess->triangulated_index.push_back(2*TI[i][2]); tess->triangulated_index.push_back(3*PI[i][2]); } tessFace->sizes_triangulated.push_back(nI); if(triangle_color) { tessFace->line_attributes.reserve(nI); for(uint32_t i=0; iline_attributes.push_back(SI[i]); } else if (style_index != m1 ) { tessFace->line_attributes.push_back(style_index); } if(vertex_color) { tessFace->is_rgba=false; for(uint32_t i=0; iis_rgba=true; break; } tessFace->rgba_vertices.reserve((tessFace->is_rgba?4:3)*3*nI); for(uint32_t i=0; irgba_vertices.push_back(byte(C[CI[i][0]].R)); tessFace->rgba_vertices.push_back(byte(C[CI[i][0]].G)); tessFace->rgba_vertices.push_back(byte(C[CI[i][0]].B)); if(tessFace->is_rgba) tessFace->rgba_vertices.push_back(byte(C[CI[i][0]].A)); tessFace->rgba_vertices.push_back(byte(C[CI[i][1]].R)); tessFace->rgba_vertices.push_back(byte(C[CI[i][1]].G)); tessFace->rgba_vertices.push_back(byte(C[CI[i][1]].B)); if(tessFace->is_rgba) tessFace->rgba_vertices.push_back(byte(C[CI[i][1]].A)); tessFace->rgba_vertices.push_back(byte(C[CI[i][2]].R)); tessFace->rgba_vertices.push_back(byte(C[CI[i][2]].G)); tessFace->rgba_vertices.push_back(byte(C[CI[i][2]].B)); if(tessFace->is_rgba) tessFace->rgba_vertices.push_back(byte(C[CI[i][2]].A)); } } tess->addTessFace(tessFace); const uint32_t tess_index = add3DTess(tess); return tess_index; } void addQuads(uint32_t nP, const double P[][3], uint32_t nI, const uint32_t PI[][4], const PRCmaterial &m, uint32_t nN, const double N[][3], const uint32_t NI[][4], uint32_t nT, const double T[][2], const uint32_t TI[][4], uint32_t nC, const RGBAColour C[], const uint32_t CI[][4], uint32_t nM, const PRCmaterial M[], const uint32_t MI[], double ca); uint32_t createQuadMesh(uint32_t nP, const double P[][3], uint32_t nI, const uint32_t PI[][4], uint32_t style_index, uint32_t nN, const double N[][3], const uint32_t NI[][4], uint32_t nT, const double T[][2], const uint32_t TI[][4], uint32_t nC, const RGBAColour C[], const uint32_t CI[][4], uint32_t nS, const uint32_t S[], const uint32_t SI[], double ca); uint32_t createQuadMesh(uint32_t nP, const double P[][3], uint32_t nI, const uint32_t PI[][4], const PRCmaterial& m, uint32_t nN, const double N[][3], const uint32_t NI[][4], uint32_t nT, const double T[][2], const uint32_t TI[][4], uint32_t nC, const RGBAColour C[], const uint32_t CI[][4], uint32_t nM, const PRCmaterial M[], const uint32_t MI[], double ca) { const uint32_t style = addMaterial(m); if(M!=NULL && nM>0) { uint32_t* const styles = new uint32_t[nM]; for(uint32_t i=0; ibase_surface = surface; \ face.transparent = m.alpha < 1.0; \ face.style = addMaterial(m); #define ADDCOMPFACE \ PRCgroup &group = findGroup(); \ group.compfaces.push_back(PRCcompface()); \ PRCcompface& face = group.compfaces.back(); \ PRCCompressedFace *compface = new PRCCompressedFace; \ face.face = compface; \ face.transparent = m.alpha < 1.0; \ face.style = addMaterial(m); inline bool isid(const double* t) { return( t[0]==1 && t[1]==0 && t[2]==0 && t[3]==0 && t[4]==0 && t[5]==1 && t[6]==0 && t[7]==0 && t[8]==0 && t[9]==0 && t[10]==1 && t[11]==0 && t[12]==0 && t[13]==0 && t[14]==0 && t[15]==1); } #define SETTRANSF \ if(t&&!isid(t)) \ face.transform = new PRCGeneralTransformation3d(t); \ if(origin) surface->origin.Set(origin[0],origin[1],origin[2]); \ if(x_axis) surface->x_axis.Set(x_axis[0],x_axis[1],x_axis[2]); \ if(y_axis) surface->y_axis.Set(y_axis[0],y_axis[1],y_axis[2]); \ surface->scale = scale; \ surface->geometry_is_2D = false; \ if(surface->origin!=PRCVector3d(0.0,0.0,0.0)) \ surface->behaviour = surface->behaviour | PRC_TRANSFORMATION_Translate; \ if(surface->x_axis!=PRCVector3d(1.0,0.0,0.0)||surface->y_axis!=PRCVector3d(0.0,1.0,0.0)) \ surface->behaviour = surface->behaviour | PRC_TRANSFORMATION_Rotate; \ if(surface->scale!=1) \ surface->behaviour = surface->behaviour | PRC_TRANSFORMATION_Scale; \ surface->has_transformation = (surface->behaviour != PRC_TRANSFORMATION_Identity); void useMesh(uint32_t tess_index, uint32_t style_index, PRCGENTRANSFORM); void useMesh(uint32_t tess_index, const PRCmaterial& m, PRCGENTRANSFORM) { useMesh(tess_index,addMaterial(m),t); } void useMesh(uint32_t tess_index, uint32_t style_index, PRCCARTRANSFORM); void useMesh(uint32_t tess_index, const PRCmaterial& m, PRCCARTRANSFORM) { useMesh(tess_index,addMaterial(m),origin, x_axis, y_axis, scale); } void useLines(uint32_t tess_index, uint32_t style_index, PRCGENTRANSFORM); void useLines(uint32_t tess_index, const RGBAColour& c, double w, PRCGENTRANSFORM) { useLines(tess_index, addLineMaterial(c,w), t); } void useLines(uint32_t tess_index, uint32_t style_index, PRCCARTRANSFORM); void useLines(uint32_t tess_index, const RGBAColour& c, double w, PRCCARTRANSFORM) { useLines(tess_index,addLineMaterial(c,w),origin, x_axis, y_axis, scale); } // void addTriangle(const double P[][3], const double T[][2], uint32_t style_index); template void addLine(uint32_t n, const V P[], const RGBAColour &c, double w=1.0) { PRCgroup &group = findGroup(); if(group.options.tess) { group.lines[w].push_back(PRCtessline()); PRCtessline& line = group.lines[w].back(); line.color.red = c.R; line.color.green = c.G; line.color.blue = c.B; for(uint32_t i=0; ipoint.resize(n); for(uint32_t i=0; ipoint[i].Set(X(P[i]),Y(P[i]),Z(P[i])); curve->interval.min = 0; curve->interval.max = curve->point.size()-1; } } template void addBezierCurve(uint32_t n, const V cP[], const RGBAColour &c) { ADDWIRE(PRCNURBSCurve) curve->is_rational = false; curve->degree = 3; const size_t NUMBER_OF_POINTS = n; curve->control_point.resize(NUMBER_OF_POINTS); for(size_t i = 0; i < NUMBER_OF_POINTS; ++i) curve->control_point[i].Set(X(cP[i]),Y(cP[i]),Z(cP[i])); curve->knot.resize(3+NUMBER_OF_POINTS+1); curve->knot[0] = 1; for(size_t i = 1; i < 3+NUMBER_OF_POINTS; ++i) curve->knot[i] = (i+2)/3; // integer division is intentional curve->knot[3+NUMBER_OF_POINTS] = (3+NUMBER_OF_POINTS+1)/3; } template void addCurve(uint32_t d, uint32_t n, const V cP[], const double *k, const RGBAColour &c, const double w[]) { ADDWIRE(PRCNURBSCurve) curve->is_rational = (w!=NULL); curve->degree = d; curve->control_point.resize(n); for(uint32_t i = 0; i < n; i++) if(w) curve->control_point[i].Set(X(cP[i])*w[i],Y(cP[i])*w[i],Z(cP[i])*w[i], w[i]); else curve->control_point[i].Set(X(cP[i]),Y(cP[i]),Z(cP[i])); curve->knot.resize(d+n+1); for(uint32_t i = 0; i < d+n+1; i++) curve->knot[i] = k[i]; } template void addQuad(const V P[], const RGBAColour C[]) { PRCgroup &group = findGroup(); group.quads.push_back(PRCtessquad()); PRCtessquad &quad = group.quads.back(); for(size_t i = 0; i < 4; i++) { quad.vertices[i].x = X(P[i]); quad.vertices[i].y = Y(P[i]); quad.vertices[i].z = Z(P[i]); quad.colours[i] = C[i]; } } template void addRectangle(const V P[], const PRCmaterial &m) { PRCgroup &group = findGroup(); if(group.options.tess) { group.rectangles.push_back(PRCtessrectangle()); PRCtessrectangle &rectangle = group.rectangles.back(); rectangle.style = addMaterial(m); for(size_t i = 0; i < 4; i++) { rectangle.vertices[i].x = X(P[i]); rectangle.vertices[i].y = Y(P[i]); rectangle.vertices[i].z = Z(P[i]); } } else if(group.options.compression == 0.0) { ADDFACE(PRCNURBSSurface) surface->is_rational = false; surface->degree_in_u = 1; surface->degree_in_v = 1; surface->control_point.resize(4); for(size_t i = 0; i < 4; ++i) { surface->control_point[i].x = X(P[i]); surface->control_point[i].y = Y(P[i]); surface->control_point[i].z = Z(P[i]); } surface->knot_u.resize(4); surface->knot_v.resize(4); surface->knot_v[0] = surface->knot_u[0] = 1; surface->knot_v[1] = surface->knot_u[1] = 3; surface->knot_v[2] = surface->knot_u[2] = 4; surface->knot_v[3] = surface->knot_u[3] = 4; } else { ADDCOMPFACE compface->degree = 1; compface->control_point.resize(4); for(size_t i = 0; i < 4; ++i) { compface->control_point[i].x = X(P[i]); compface->control_point[i].y = Y(P[i]); compface->control_point[i].z = Z(P[i]); } } } template void addPatch(const V cP[], const PRCmaterial &m) { PRCgroup &group = findGroup(); if(group.options.compression == 0.0) { ADDFACE(PRCNURBSSurface) surface->is_rational = false; surface->degree_in_u = 3; surface->degree_in_v = 3; surface->control_point.resize(16); for(size_t i = 0; i < 16; ++i) { surface->control_point[i].x = X(cP[i]); surface->control_point[i].y = Y(cP[i]); surface->control_point[i].z = Z(cP[i]); } surface->knot_u.resize(8); surface->knot_v.resize(8); surface->knot_v[0] = surface->knot_u[0] = 1; surface->knot_v[1] = surface->knot_u[1] = 1; surface->knot_v[2] = surface->knot_u[2] = 1; surface->knot_v[3] = surface->knot_u[3] = 1; surface->knot_v[4] = surface->knot_u[4] = 2; surface->knot_v[5] = surface->knot_u[5] = 2; surface->knot_v[6] = surface->knot_u[6] = 2; surface->knot_v[7] = surface->knot_u[7] = 2; } else { ADDCOMPFACE compface->degree = 3; compface->control_point.resize(16); for(size_t i = 0; i < 16; ++i) { compface->control_point[i].x = X(cP[i]); compface->control_point[i].y = Y(cP[i]); compface->control_point[i].z = Z(cP[i]); } } } template void addSurface(uint32_t dU, uint32_t dV, uint32_t nU, uint32_t nV, const V cP[], const double *kU, const double *kV, const PRCmaterial &m, const double w[]) { ADDFACE(PRCNURBSSurface) surface->is_rational = (w!=NULL); surface->degree_in_u = dU; surface->degree_in_v = dV; surface->control_point.resize(nU*nV); for(size_t i = 0; i < nU*nV; i++) if(w) surface->control_point[i]=PRCControlPoint(X(cP[i])*w[i],Y(cP[i])*w[i],Z(cP[i])*w[i],w[i]); else surface->control_point[i]=PRCControlPoint(X(cP[i]),Y(cP[i]),Z(cP[i])); surface->knot_u.insert(surface->knot_u.end(), kU, kU+(dU+nU+1)); surface->knot_v.insert(surface->knot_v.end(), kV, kV+(dV+nV+1)); } template void addTube(uint32_t n, const V cP[], const V oP[], bool straight, const PRCmaterial &m, PRCTRANSFORM) { ADDFACE(PRCBlend01) SETTRANSF if(straight) { PRCPolyLine *center_curve = new PRCPolyLine; center_curve->point.resize(n); for(uint32_t i=0; ipoint[i].Set(X(cP[i]),Y(cP[i]),Z(cP[i])); center_curve->interval.min = 0; center_curve->interval.max = center_curve->point.size()-1; surface->center_curve = center_curve; PRCPolyLine *origin_curve = new PRCPolyLine; origin_curve->point.resize(n); for(uint32_t i=0; ipoint[i].Set(X(oP[i]),Y(oP[i]),Z(oP[i])); origin_curve->interval.min = 0; origin_curve->interval.max = origin_curve->point.size()-1; surface->origin_curve = origin_curve; surface->uv_domain.min.x = 0; surface->uv_domain.max.x = 2*pi; surface->uv_domain.min.y = 0; surface->uv_domain.max.y = n-1; } else { PRCNURBSCurve *center_curve = new PRCNURBSCurve; center_curve->is_rational = false; center_curve->degree = 3; const uint32_t CENTER_NUMBER_OF_POINTS = n; center_curve->control_point.resize(CENTER_NUMBER_OF_POINTS); for(uint32_t i = 0; i < CENTER_NUMBER_OF_POINTS; ++i) center_curve->control_point[i].Set(X(cP[i]),Y(cP[i]),Z(cP[i])); center_curve->knot.resize(3+CENTER_NUMBER_OF_POINTS+1); center_curve->knot[0] = 1; for(uint32_t i = 1; i < 3+CENTER_NUMBER_OF_POINTS; ++i) center_curve->knot[i] = (i+2)/3; // integer division is intentional center_curve->knot[3+CENTER_NUMBER_OF_POINTS] = (3+CENTER_NUMBER_OF_POINTS+1)/3; surface->center_curve = center_curve; PRCNURBSCurve *origin_curve = new PRCNURBSCurve; origin_curve->is_rational = false; origin_curve->degree = 3; const uint32_t ORIGIN_NUMBER_OF_POINTS = n; origin_curve->control_point.resize(ORIGIN_NUMBER_OF_POINTS); for(uint32_t i = 0; i < ORIGIN_NUMBER_OF_POINTS; ++i) origin_curve->control_point[i].Set(X(oP[i]),Y(oP[i]),Z(oP[i])); origin_curve->knot.resize(3+ORIGIN_NUMBER_OF_POINTS+1); origin_curve->knot[0] = 1; for(size_t i = 1; i < 3+ORIGIN_NUMBER_OF_POINTS; ++i) origin_curve->knot[i] = (i+2)/3; // integer division is intentional origin_curve->knot[3+ORIGIN_NUMBER_OF_POINTS] = (3+ORIGIN_NUMBER_OF_POINTS+1)/3; surface->origin_curve = origin_curve; surface->uv_domain.min.x = 0; surface->uv_domain.max.x = 2*pi; surface->uv_domain.min.y = 1; // first knot surface->uv_domain.max.y = (3+CENTER_NUMBER_OF_POINTS+1)/3; // last knot } } void addHemisphere(double radius, const PRCmaterial& m, PRCTRANSFORM); void addSphere(double radius, const PRCmaterial& m, PRCTRANSFORM); void addDisk(double radius, const PRCmaterial& m, PRCTRANSFORM); void addCylinder(double radius, double height, const PRCmaterial& m, PRCTRANSFORM); void addCone(double radius, double height, const PRCmaterial& m, PRCTRANSFORM); void addTorus(double major_radius, double minor_radius, double angle1, double angle2, const PRCmaterial& m, PRCTRANSFORM); #undef PRCTRANSFORM #undef PRCCARTRANSFORM #undef PRCGENTRANSFORM #undef ADDCOMPFACE uint32_t addPicture(EPRCPictureDataFormat format, uint32_t size, const uint8_t *picture, uint32_t width=0, uint32_t height=0, std::string name="", uint32_t fileStructure=0) { return fileStructures[fileStructure]->addPicture(format, size, picture, width, height, name); } uint32_t addPicture(const PRCpicture& pic, std::string name="", uint32_t fileStructure=0) { return fileStructures[fileStructure]->addPicture(pic.format, pic.size, pic.data, pic.width, pic.height, name); } uint32_t addTextureDefinition(PRCTextureDefinition*& pTextureDefinition, uint32_t fileStructure=0) { return fileStructures[fileStructure]->addTextureDefinition(pTextureDefinition); } uint32_t addTextureApplication(PRCTextureApplication*& pTextureApplication, uint32_t fileStructure=0) { return fileStructures[fileStructure]->addTextureApplication(pTextureApplication); } uint32_t addRgbColor(const PRCRgbColor &color, uint32_t fileStructure=0) { return fileStructures[fileStructure]->addRgbColor(color); } uint32_t addRgbColorUnique(const PRCRgbColor &color, uint32_t fileStructure=0) { return fileStructures[fileStructure]->addRgbColorUnique(color); } uint32_t addMaterialGeneric(PRCMaterialGeneric*& pMaterialGeneric, uint32_t fileStructure=0) { return fileStructures[fileStructure]->addMaterialGeneric(pMaterialGeneric); } uint32_t addStyle(PRCStyle*& pStyle, uint32_t fileStructure=0) { return fileStructures[fileStructure]->addStyle(pStyle); } uint32_t addPartDefinition(PRCPartDefinition*& pPartDefinition, uint32_t fileStructure=0) { return fileStructures[fileStructure]->addPartDefinition(pPartDefinition); } uint32_t addProductOccurrence(PRCProductOccurrence*& pProductOccurrence, uint32_t fileStructure=0) { return fileStructures[fileStructure]->addProductOccurrence(pProductOccurrence); } uint32_t addTopoContext(PRCTopoContext*& pTopoContext, uint32_t fileStructure=0) { return fileStructures[fileStructure]->addTopoContext(pTopoContext); } uint32_t getTopoContext(PRCTopoContext*& pTopoContext, uint32_t fileStructure=0) { return fileStructures[fileStructure]->getTopoContext(pTopoContext); } uint32_t add3DTess(PRC3DTess*& p3DTess, uint32_t fileStructure=0) { return fileStructures[fileStructure]->add3DTess(p3DTess); } uint32_t add3DWireTess(PRC3DWireTess*& p3DWireTess, uint32_t fileStructure=0) { return fileStructures[fileStructure]->add3DWireTess(p3DWireTess); } /* uint32_t addMarkupTess(PRCMarkupTess*& pMarkupTess, uint32_t fileStructure=0) { return fileStructures[fileStructure]->addMarkupTess(pMarkupTess); } uint32_t addMarkup(PRCMarkup*& pMarkup, uint32_t fileStructure=0) { return fileStructures[fileStructure]->addMarkup(pMarkup); } uint32_t addAnnotationItem(PRCAnnotationItem*& pAnnotationItem, uint32_t fileStructure=0) { return fileStructures[fileStructure]->addAnnotationItem(pAnnotationItem); } */ uint32_t addCoordinateSystem(PRCCoordinateSystem*& pCoordinateSystem, uint32_t fileStructure=0) { return fileStructures[fileStructure]->addCoordinateSystem(pCoordinateSystem); } uint32_t addCoordinateSystemUnique(PRCCoordinateSystem*& pCoordinateSystem, uint32_t fileStructure=0) { return fileStructures[fileStructure]->addCoordinateSystemUnique(pCoordinateSystem); } private: void serializeModelFileData(PRCbitStream&); std::ofstream *fout; std::ostream &output; }; } #endif // __O_PRC_FILE_H