divert(-1) lib3D.m4 This is an experimental library of macros for rotations, projections, and other manipulations of 3D vectors, that is, argument triples. * Circuit_macros Version 5.86, copyright (c) 2006 J. D. Aplevich, under * * the LaTeX Project Public License. The files of this distribution may be * * redistributed or modified, provided that this copyright notice is * * included, and provided that modifications are clearly marked to * * distinguish them from this distribution. There is no warranty * * whatsoever for these files. * Installation directory. You can set this to the null string if you use an environment variable to tell m4 where to search: ifdef(`HOMELIB_',, `define(`HOMELIB_',`./circuit/')') #`define(`HOMELIB_',`C:\Dwight\lib\')') Default pic processor: gpic. To make dpic -p the default, change gpic to pstricks here: ifdef(`m4picprocessor',,`include(HOMELIB_`'gpic.m4)divert(-1)') Set view angles (degrees) 3D to 2D projection. `setview (azimuth, elevation)' where the projection matrix P is P =( -sin(az), cos(az), 0 ) (-sin(el)cos(a),-sin(a)sin(el),cos(el))' define(`setview',`dnl m4azim=prod_($1,dtor_); m4elev=prod_($2,dtor_) m4caz=cos(m4azim); m4saz=sin(m4azim); m4cel=cos(m4elev); m4sel=sin(m4elev)') This does the 3D to 2D projection i.e. project(x,y,z) produces u,v that are the coordinates on the 2D plane defined by the view angles. define(`project',`diff_(`prod_(m4caz,$2)',`prod_(m4saz,$1)'),dnl diff_(`prod_(m4cel,$3)',`sum_(`prod_(m4sel*m4caz,$1)',dnl `prod_(m4sel*m4saz,$2)')')') Rotation about x axis define(`rot3Dx',``$2',diff_(prod_(cos(`$1'),`$3'),prod_(sin(`$1'),`$4')),dnl sum_(prod_(sin(`$1'),`$3'),prod_(cos(`$1'),`$4'))') Rotation about y axis define(`rot3Dy',`sum_(prod_(cos(`$1'),`$2'),prod_(sin(`$1'),`$4')),`$3',dnl diff_(prod_(cos(`$1'),`$4'),prod_(sin(`$1'),`$2'))') Rotation about z axis define(`rot3Dz',`diff_(prod_(cos(`$1'),`$2'),prod_(sin(`$1'),`$3')),dnl sum_(prod_(sin(`$1'),`$2'),prod_(cos(`$1'),`$3')),`$4'') Cross product define(`cross3D',`diff_(prod_(`$2',`$6'),prod_(`$3',`$5')),dnl diff_(prod_(`$3',`$4'),prod_(`$1',`$6')),dnl diff_(prod_(`$1',`$5'),prod_(`$2',`$4'))') Dot product define(`dot3D',`(sum_( sum_(prod_(`$1',`$4'),prod_(`$2',`$5')),prod_(`$3',`$6')))') Vector addition, subtraction, scalar product define(`sum3D',`sum_(`$1',`$4'),sum_(`$2',`$5'),sum_(`$3',`$6')') define(`diff3D',`diff_(`$1',`$4'),diff_(`$2',`$5'),diff_(`$3',`$6')') define(`sprod3D',`prod_(`$1',`$2'),prod_(`$1',`$3'),prod_(`$1',`$4')') Extract direction cosine define(`dcosine3D',`(ifelse(`$1',1,`$2',`$1',2,`$3',`$4'))') Euclidian length define(`length3D',`sqrt((`$1')^2+(`$2')^2+(`$3')^2)') Unit vector define(`unit3D',`sprod3D(1/length3D(`$1',`$2',`$3'),`$1',`$2',`$3')') Write out the 3 arguments for debug define(`print3D',`print sprintf("`$1'(%g,%g,%g)",`$2',`$3',`$4')') `Fector(x,y,z,nx,ny,nz) with .Origin at pos Arrow with flat 3D head. The second vector, (i.e. args nx,ny,nz) is the normal to the head flat surface' define(`Fector',`[ Origin: 0,0 define(`M4F_V',``$1',`$2',`$3'')dnl the whole vector V m4F_lv = length3D(M4F_V) define(`M4F_T',``$4',`$5',`$6'')dnl normal to the top surface m4F_lT =length3D(M4F_T) define(`M4F_Vn',`sprod3D(1/m4F_lv,M4F_V)')dnl unit vector Vn define(`m4F_ln',`0.15*scale')dnl arrowhead length define(`m4F_wd',`0.09*scale')dnl " width define(`m4F_dp',`0.0375*scale')dnl " depth (thickness) define(`M4F_Vt',`sprod3D((m4F_lv-m4F_ln),M4F_Vn)')dnl head base vector define(`M4F_View',`rot3Dz(m4azim,rot3Dy(-m4elev,1,0,0))')dnl view vector Start: Origin End: project(M4F_V) rpoint_(from Origin to End) m4F_lTdp = m4F_dp/2/m4F_lT m4F_vtx = dcosine3D(1,M4F_Vt); m4F_vty = dcosine3D(2,M4F_Vt) # Vt coords m4F_vtz = dcosine3D(3,M4F_Vt) dnl half-thickness vector in direction of T m4F_tx = prod_(m4F_lTdp,`$4'); m4F_ty = prod_(m4F_lTdp,`$5') m4F_tz = prod_(m4F_lTdp,`$6') dnl half-width vector right m4F_rf = m4F_wd/2/m4F_lT/m4F_lv m4F_rx = m4F_rf*dcosine3D(1,cross3D(M4F_V,M4F_T)) m4F_ry = m4F_rf*dcosine3D(2,cross3D(M4F_V,M4F_T)) m4F_rz = m4F_rf*dcosine3D(3,cross3D(M4F_V,M4F_T)) dnl top and bottom points of V TV: project(sum3D(M4F_V, m4F_tx,m4F_ty,m4F_tz)) BV: project(diff3D(M4F_V, m4F_tx,m4F_ty,m4F_tz)) dnl top, bottom right, left of base TR: project(sum3D(m4F_vtx,m4F_vty,m4F_vtz, sum3D(m4F_tx,m4F_ty,m4F_tz,m4F_rx,m4F_ry,m4F_rz))) BR: project(sum3D(m4F_vtx,m4F_vty,m4F_vtz, diff3D(m4F_rx,m4F_ry,m4F_rz,m4F_tx,m4F_ty,m4F_tz))) BL: project(diff3D(m4F_vtx,m4F_vty,m4F_vtz, sum3D(m4F_rx,m4F_ry,m4F_rz,m4F_tx,m4F_ty,m4F_tz))) TL: project(diff3D(m4F_vtx,m4F_vty,m4F_vtz, diff3D(m4F_rx,m4F_ry,m4F_rz,m4F_tx,m4F_ty,m4F_tz))) lthickness = linethick dnl base if dot3D(M4F_V,M4F_View) < 0 then { thinlines_ ifpstricks( `\pscustom[linewidth=0pt,fillstyle=solid,fillcolor=gray]{ line from BR to BL then to TL then to TR then to BR \relax}', `gshade(0.5,BR,BL,TL,TR,BR,BL)') line from BR to BL ; line to TL ; line to TR ; line to BR linethick_(lthickness) } dnl shaft linethick_(1.2) psset_(arrows=c-c) line from Origin to project(m4F_vtx,m4F_vty,m4F_vtz) psset_(arrows=-) thinlines_ dnl top or bottom if dot3D(M4F_T,M4F_View) > 0 then { ifpstricks( `\pscustom[linewidth=0pt,fillstyle=solid,fillcolor=white]{ line from TV to TR then to TL then to TV \relax}', `gshade(1,TR,TL,TV,TR,TL)') line from TV to TR ; line to TL ; line to TV } else { ifpstricks( `\pscustom[linewidth=0pt,fillstyle=solid,fillcolor=black]{ line from BV to BR then to BL then to BV \relax}', `gshade(0,BR,BL,BV,BR,BL)') line from BV to BR ; line to BL ; line to BV } dnl starboard normal; draw right face define(`M4F_S', `cross3D(diff3D(sprod3D(m4F_ln,M4F_Vn),m4F_rx,m4F_ry,m4F_rz),M4F_T)')dnl if dot3D(M4F_S,M4F_View) > 0 then { ifpstricks( `\pscustom[linewidth=0pt,fillstyle=solid,fillcolor=white]{ line from TV to BV then to BR then to TR then to TV \relax}', `gshade(1,TV,BV,BR,TR,TV,BV)') line from TV to BV ; line to BR ; line to TR ; line to TV } dnl port normal; draw left face define(`M4F_P', `cross3D(M4F_T,sum3D(sprod3D(m4F_ln,M4F_Vn),m4F_rx,m4F_ry,m4F_rz))')dnl if dot3D(M4F_P,M4F_View) > 0 then { ifpstricks( `\pscustom[linewidth=0pt,fillstyle=solid,fillcolor=white]{ line from TV to BV then to BL then to TL then to TV \relax}', `gshade(1,TV,BV,BL,TL,TV,BV)') line from TV to BV ; line to BL ; line to TL ; line to TV } linethick_(lthickness) ] ') divert(0)dnl