A small tour of Prosper facilities *ET_EX presentations made easy*

Frédéric Goualard

Centrum voor Wiskunde en Informatica The Netherlands

Introduction

If you click on my name in the previous page, you should be directed to the Prosper homepage, provided your Acrobat Reader has been properly configured.

Press on CTRL-L to go to/leave full screen view.

Curious? Want to go directly to the last page? Push here.

- Split;
- Blinds;

- Split;
- Blinds;
- Box;

- Split;
- Blinds;
- Box;
- Wipe;

- Split;
- Blinds;
- Box;
- Wipe;
- Dissolve;

- Split;
- Blinds;
- Box;
- Wipe;
- Dissolve;
- **G**litter;

- Split;
- Blinds;
- Box;
- Wipe;
- Dissolve;
- **G**litter;
- Replace.

A small diagram with some few lines of LAT_EX.

Diagrams

A small diagram with some few lines of LAT_EX. Since the diagram and the text are at the same level, there is no difficulty to add some link from one to another.

$$(X - A, N - A) \xrightarrow{a} (\tilde{X}, a)$$

$$r \xrightarrow{r} \xrightarrow{s} (\tilde{X}, N)$$

$$(X, N) \xrightarrow{h}$$

A small *clipping* effect

Any practical use for this?

n etait pas une petite gaic
mais une porte dérobée. Elle dc.
en apparence sur la campagne. Sc
l'œil d'un contrôleur paisible on g
nait une route blanche sans mvs+`

Jan Antores

A small *clipping* effect

Any practical use for this?

mais une porte dérobée. Elle du. en apparence sur la campagne. So l'œil d'un contrôleur paisible on gnait une route blanche sans mv^{s+s} The Householder formula below lets you compute $f^{-1}(x)$ for an arbitrary f.

$$x_{k+1} \mapsto \Phi_n(x_k) = x_k + (n-1) \frac{\left(\frac{1}{f(x_k)}\right)^{n-2}}{\left(\frac{1}{f(x_k)}\right)^{n-1}} + f(x_k)^{n+1} \quad \psi \tag{1}$$

The Householder formula below lets you compute $f^{-1}(x)$ for an arbitrary f.

$$x_{k+1} \mapsto \Phi_n(x_k) = x_k + (n-1) \frac{\left(\frac{1}{f(x_k)}\right)^{n-2}}{\left(\frac{1}{f(x_k)}\right)^{n-1}} + f(x_k)^{n+1} \psi$$
(1)

where $n \geq 2$ and ψ is an arbitrary function.

The Householder formula below lets you compute $f^{-1}(x)$ for an arbitrary f.

$$x_{k+1} \mapsto \Phi_n(x_k) = x_k + (n-1) \frac{\left(\frac{1}{f(x_k)}\right)^{n-2}}{\left(\frac{1}{f(x_k)}\right)^{n-1}} + f(x_k)^{n+1} \psi \tag{1}$$

where $n \geq 2$ and ψ is an arbitrary function.

Formula (1) gives an iteration of order *n* converging towards x_* such that: $f(x_*) = 0$.

Overlaps of colors

Intersection of sets. First the yellow one...

Overlaps of colors

Intersection of sets. First the yellow one... Then the blue one.Remember how to do that with MS PowerPoint?

Last slide

This is the last slide. Do you want to go to the second one?