-- tkz_elements_functions_matrices.lua -- date 2025/01/06 -- version 3.10 -- Copyright 2024 Alain Matthes -- This work may be distributed and/or modified under the -- conditions of the LaTeX Project Public License, either version 1.3 -- of this license or (at your option) any later version. -- The latest version of this license is in -- http://www.latex-project.org/lppl.txt -- and version 1.3 or later is part of all distributions of LaTeX -- version 2005/12/01 or later. -- This work has the LPPL maintenance status “maintained”. -- The Current Maintainer of this work is Alain Matthes. -- ---------------------------------------------------------------------------- function print_matrix(m,mstyle) local mstyle = (mstyle or 'bmatrix') local m = (m.type=='matrix' and m.set or m) tex.sprint("$") tex.sprint("\\begin{"..mstyle.."}") for i = 1, #m do for j = 1, #m[1] do local x = m[i][j] local st = display(x) tex.sprint(st) if j < #m[1] then tex.sprint(" & ") end end tex.sprint("\\\\") end tex.sprint("\\end{"..mstyle.."}") tex.sprint("$") end function print_array(matrix) local mdata = (matrix.type=='matrix' and matrix.set or matrix) tex.sprint("\\{%") for i = 1, #mdata do local row = mdata[i] local row_str = "{\\{" for j = 1, #row do row_str = row_str .. " " .. tostring(row[j]) if j < #row then row_str = row_str .. " ," end end if (i~=#mdata) and (j~=#row) then if i>1 then row_str = row_str .. " \\}}," else row_str = row_str .. " \\}}," end tex.sprint(row_str) else if i>1 then row_str = row_str .. " \\}}" else row_str = row_str .. " \\}}" end tex.sprint(row_str) end end tex.sprint("\\}") end function mul_matrix(A, B) local adata = (A.type=='matrix' and A.set or A) local bdata = (B.type=='matrix' and B.set or B) local C = {} for i = 1, #adata do C[i] = {} for j = 1, #bdata[1] do local num = adata[i][1] * bdata[1][j] for k = 2, #adata[1] do num = num + adata[i][k] * bdata[k][j] end C[i][j] = num end end return matrix : new (C) end function add_matrix(A, B) local adata = (A.type=='matrix' and A.set or A) local bdata = (B.type=='matrix' and B.set or B) local S = {} for i = 1, #adata do local T = {} S[i] = T for j = 1, #adata[1] do T[j] = adata[i][j] + bdata[i][j] end end return matrix : new (S) end function k_mul_matrix(n, A) local adata = (A.type=='matrix' and A.set or A) local S = {} for i = 1, #adata, 1 do local T = {} S[i] = T for j =1, #adata[1], 1 do T[j] = n * adata[i][j] end end return matrix : new (S) end function transposeMatrix(A) local mdata = (A.type=='matrix' and A.set or A) local transposedMatrix = {} for i = 1, #mdata[1] do transposedMatrix[i] = {} for j = 1, #mdata do transposedMatrix[i][j] = mdata[j][i] end end return matrix : new (transposedMatrix) end -- Function to calculate the determinant of a square matrix function determinant(A) local matrix = (A.type=='matrix' and A.set or A) if #matrix == #matrix[1] then local n = #matrix if n == 1 then return matrix[1][1] -- Base case for 1x1 matrix elseif n == 2 then return matrix[1][1] * matrix[2][2] - matrix[1][2] * matrix[2][1] -- Base case for 2x2 matrix else local det = 0 for j = 1, n do local minor = {} for i = 2, n do minor[i - 1] = {} for k = 1, n do if k ~= j then minor[i - 1][#minor[i - 1] + 1] = matrix[i][k] end end end det = det + ((-1)^(j + 1)) * matrix[1][j] * determinant(minor) -- Recursive call for larger matrices end return det end else return nil end end function check_square_matrix (A) local matrix = (A.type=='matrix' and A.set or A) if #matrix == #matrix[1] then return true else return false end end function id_matrix (n) local identityMatrix = {} for i = 1, n do identityMatrix[i] = {} for j = 1, n do if i == j then identityMatrix[i][j] = 1 else identityMatrix[i][j] = 0 end end end return matrix : new (identityMatrix) end function inverse_2x2(A) local m = (A.type=='matrix' and A.set or A) local a, b, c, d = m[1][1], m[1][2], m[2][1], m[2][2] local D = A.det if D == 0 then return nil -- La matrice n'est pas inversible else local inv ={} inv[1]={} inv[1][1] = d / D inv[1][2] = -b / D inv[2]={} inv[2][1] = -c / D inv[2][2] = a / D return matrix : new (inv) end end function adjugate_(A) local m = (A.type=='matrix' and A.set or A) if #m == 2 then local a,b,c,d = m[2][2],-m[1][2],- m[2][1],m[1][1] return matrix : new ({{a,b},{c,d}}) elseif #m == 3 then local a, b, c = m[1][1], m[1][2], m[1][3] local d, e, f = m[2][1], m[2][2], m[2][3] local g, h, i = m[3][1], m[3][2], m[3][3] return transposeMatrix(matrix : new ({ {e * i - f * h, -(d * i - f * g), d * h - e * g}, {-(b * i - c * h), a * i - c * g, -(a * h - b * g)}, {b * f - c * e, -(a * f - c * d), a * e - b * d} })) else return nil end end function inverse_3x3(A) local D = A.det if D == 0 then return nil -- La matrice n'est pas inversible else local adj = adjugate_(A) local m = (adj.type=='matrix' and adj.set or adj) local inv = {} for i = 1, 3 do inv[i] = {} for j = 1, 3 do inv[i][j] = m[i][j] / D end end return matrix : new (inv) end end -- inverse only for 2x2 or 3x3 matrix function inv_matrix (A) if A.det ==0 then tex.print("Matrix not inversible: det = 0") return nil else local M = (A.type=='matrix' and A.set or A) local n = #M if n == 2 then local m = (A.type=='matrix' and A.set or A) local a, b, c, d = m[1][1], m[1][2], m[2][1], m[2][2] local D = A.det local inv ={} inv[1]={} inv[1][1] = d / D inv[1][2] = -b / D inv[2]={} inv[2][1] = -c / D inv[2][2] = a / D return matrix : new (inv) else local D = A.det local adj = adjugate_(A) local m = (adj.type=='matrix' and adj.set or adj) local inv = {} for i = 1, 3 do inv[i] = {} for j = 1, 3 do inv[i][j] = m[i][j] / D end end return matrix : new (inv) end end end function diagonalize_ (A) local m = (A.type=='matrix' and A.set or A) local trace = m[1][1] + m[2][2] local a,b = m[1][1],m[1][2] local det = A.det local D = trace * trace - 4 * det if D > 0 then local va1 = (trace + math.sqrt(D)) / 2 local va2 = (trace - math.sqrt(D)) / 2 return matrix : new ({{va1,0},{0,va2}}), matrix : new ({{1,1},{ (va1 - a )/b, (va2 - a)/b}}) else local va1 = point (trace/2 , math.sqrt(-D)/ 2) local va2 = point (trace/2 , - math.sqrt(-D)/ 2) return matrix : new ({{va1,0},{0,va2}})--, -- matrix : new ({{1,1},{ (va1 - a )/b, (va2 - a)/b}}) end end function isDiagonal_(A) local matrix = (A.type=='matrix' and A.set or A) if check_square_matrix (A) == true then for i = 1, #matrix do for j = 1, #matrix[1] do if i ~= j and matrix[i][j] ~= 0 then return false end end end return true else return false end end function isOrthogonal_(A) local m = (A.type=='matrix' and A.set or A) if (check_square_matrix (A) == true) and (A.det ~=0) then local mT = transposeMatrix (A) local mI = inv_matrix (A) if mT == mI then return true else return false end else return false end end function homogenization_ (A) local m = (A.type=='matrix' and A.set or A) if A.cols ~= 1 then return nil else local a,b,c a=m[1][1] b=m[2][1] c= 1 return matrix : new ({{a},{b},{c}}) end end function get_element_( A,i,j ) local m = (A.type=='matrix' and A.set or A) if m[i] and m[i][j] then return m[i][j] end end function get_htm_point(A) local m = (A.type=='matrix' and A.set or A) return point : new( m[1][1],m[2][1]) end function htm_apply_ (A,z) local V = homogenization_ ( 1/scale*z.mtx) local W = A * V return get_htm_point(W) end function htm_apply_L_ (A,obj) local x,y x = htm_apply_ (A,obj.pa) y = htm_apply_ (A,obj.pb) return line : new (x,y) end function htm_apply_C_ (A,obj) local x,y x = htm_apply_ (A,obj.center) y = htm_apply_ (A,obj.through) return circle : new (x,y) end function htm_apply_T_ (A,obj) local x,y,z x = htm_apply_ (A,obj.pa) y = htm_apply_ (A,obj.pb) z = htm_apply_ (A,obj.pc) return triangle : new (x,y,z) end function htm_apply_Q_ (A,obj) local x,y,z,t x = htm_apply_ (A,obj.pa) y = htm_apply_ (A,obj.pb) z = htm_apply_ (A,obj.pc) t = htm_apply_ (A,obj.pd) if obj.type == "square" then return square : new (x,y,z,t) elseif obj.type == "rectangle" then return rectangle : new (x,y,z,t) elseif obj.type == "parallelogram" then return parallelogram : new (x,y,z,t) elseif obj.type == "quadrilateral" then return quadrilateral : new (x,y,z,t) end end