%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % This is an example of writing a book using LaTeX and Springer's % MATHSING.STY style option file. % % The \documentstyle command specifies the use of the 12pt book style. % Do not remove the 12pt option since this would only change the % fontsizes but no other dimensions. The "mathsing" entry of the % style option list specifies the use of the Springer changes to the % LaTeX default layout for books. The "mathdef" entry specifies a % user defined macro file with extension .STY that is included before % processing the various chapters. % % To start TeX use % % $ tex &lplain math % % or a similar command depending on your operating system. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \documentstyle[12pt,mathsing]{book} %\documentstyle{mathsing} \newthe{conjecture}{conjecture*}{Conjecture}{lemmacount}{\bf}{\it} \def\frak{\rm} \numberlikebook % \numberlikearticle \begin{document} \chapter{Orbits on Flag Manifolds} Please note that this is a preliminary example text demonstrating our preliminary MathSing \LaTeX style file. \section{$H$-Orbits on $X=G/P$} Let $G$ be a connected real semisimple Lie group and $X$ the flag manifold of $G$. $X$ is a homogeneous space of $G$ and the isotropy subgroup $P=P_x$ of each point $x$ of $X$ is called a minimal parabolic subgroup of $G$. Let $\sigma$ be an involutive automorphism ($\sigma ^2=id.$) of $G$ and $H$ a subgroup of $G^\sigma =\{x\in G\mid \sigma x=x\}$ containing the identity component $G^\sigma_0$ of $G^\sigma$. Irreducible pairs $({\frak g}, {\frak h})$ of Lie algebras of $G$ and $H$ are classified by \cite{Be}. The following are special cases of $H$-orbit decompositions of $X=G/P$.\\[5pt] \indent (i) Let $\sigma$ be a Cartan involution of $G$, ${\frak g}={\frak k}\oplus {\frak s}$ the Cartan decomposition of the Lie algebra ${\frak g}$ of $G$ for $\sigma$ and $K=H=G^\sigma$. Then $P=MAN$ where $A=P\cap\exp {\frak s}$, $M=Z_K(A)$ and $N$ is the unipotent radical of $P$. The Iwasawa decomposition $G=KAN(\cong K\times A\times N)$ implies that $\#(K\setminus G/P)=1$. (ii) Let $G=G_1\times G_1$, $P=P_1\times P_1$ and $\sigma (x, y)=(y, x)$ for $(x, y)\in G_1\times G_1$. Then $H=G^\sigma=\{(x, x)\in G\mid x\in G_1\}$. Since $H\setminus G\cong G_1$ by the map $H(x, y)\mapsto x^{-1}y$, the double coset decomposition $H\setminus G/P$ is identified with the Bruhat decomposition $P_1\setminus G_1/P_1$. (iii) When $G$ is a complex semisimple Lie group and $\sigma$ is a conjugation of $G$, $H$-orbits on $X$ are studied in \cite{A}. This study suggested the formulation for the following general cases. Let $\theta$ be a Cartan involution of $G$ such that $\sigma\theta =\theta\sigma$, ${\frak g}={\frak k}\oplus {\frak s}$ the Cartan decomposition of ${\frak g}$ for $\theta$ and $K=G^\theta$. \begin{definition} An element $x$ of $X$ is called ``special'' when $A_x=P_x\cap \exp {\frak s}$ is $\sigma$-stable. Put $$U=\{x\in X\mid x \mbox{ is special }\}\enspace .$$ \end{definition} \noindent \begin{theorem} [{\rm[R, M1]}.] {\em $K\cap H\setminus U\cong H\setminus X$ by the inclusion map $U\hookrightarrow X$.} There exists a unique subgroup $H^a$ of $G$ such that $G^{\sigma\theta}_0 \subset H^a \subset G^{\sigma\theta}$ and that $K\cap H^a=K\cap H$. (Rem. $(H^a)^a=H$.) \end{theorem} \begin{corollary} {\rm\cite{M1}.} There exists a one-to-one correspondence $D\mapsto D^a$ between $H$-orbits and $H^a$-orbits on $X$ given by $K\cap H\setminus U\cong H\setminus X$ and $K\cap H\setminus U\cong H^a\setminus X$. \end{corollary} \begin{example} {}{}Let $G=SL(2,\bbbc)$. Then $X=P^1(\bbbc)=\bbbc \cup \{\infty\}$, $${\rm where}\quad \left(\matrix{a & b \cr c & d}\right)x={ax+b\over cx+d} \quad {\rm for}\ \left(\matrix{a & b \cr c & d}\right)\in SL(2,\bbbc), \ x\in X.$$ $${\rm Let}\quad \sigma\left(\matrix{a & b \cr c & d}\right)= \left(\matrix{a & -b \cr -c & d}\right), \quad{\rm and}\quad\theta g={}^t\bar g^{-1}.$$ Then $$K=SU(2),\quad H=G^\sigma = \biggl\{\left(\matrix{a & 0 \cr 0 & a^{-1}}\right)\mid a\in \bbbc^\times\biggr\},$$ $$H^a=G^{\sigma\theta}=SU(1,1)= \biggl\{\left(\matrix{a & b \cr \bar b & \bar a}\right)\mid a\bar a-b\bar b=1\biggr\}.$$ The $H$-orbits on $X$ are $\{0\},\ \bbbc^\times$ and $\{\infty\}$ and the corresponding $H^a$-orbits are $\{|x|<1\},\ \{|x|=1\}$ and $\{|x|>1\}$, respectively. ($U=\{0\}\cup \{|x|=1\}\cup \{\infty\}$\,.) \end{example} \section{Expression by Symbols} \begin{remark}[1] If $H=G^\sigma_0$, then $H\setminus X$ depends only on the pair $({\frak g}, \sigma )$ because $$X\cong \mbox{ the set of minimal parabolic subalgebras of }{\frak g}$$ and $$H\setminus X\cong {\rm Ad}(H)\mbox{-conjugacy classes of minimal parabolic subalgebras of }{\frak g}\enspace .$$ \end{remark} \noindent \begin{theorem} {\rm\cite{MO}.} Let $G$ and $H$ be as in the following list (complex classical cases). Then we can express $H\setminus X$ (and $H^a\setminus X$) by symbols. ($p+q=n$, $[H: G^\sigma_0]=1$ or $2$.) \end{theorem} \begin{table} \begin{petit} \caption{Example of a table} \begin{tabular}{l @{\hspace{8pt}} | @{\hspace{8pt}} c @{\hspace{8pt}} | @{\hspace{8pt}} c @{\hspace{8pt}} | @{\hspace{8pt}} c } \rule[-5pt]{0pt}{5pt} Type & $G$ & $H$ & $H^a$ \\ \hline \rule[5pt]{0pt}{8pt} AI & $GL(n, \bbbc)$ & $O(n, \bbbc)$ & $GL(n, \bbbr)$ \\ AII & $GL(n, \bbbc)$ & $Sp(n/2, \bbbc)$ ($n$ even) & $U^*(n)$ \\ AIII & $GL(n, \bbbc)$ & $GL(p, \bbbc)\times GL(q, \bbbc)$ & $U(p, q)$ \\ BI & $SO(2n+1, \bbbc)$ & $S(O(2p+1, \bbbc)\times O(2q, \bbbc))$ & $SO(2p+1, 2q)$ \\ CI & $Sp(n, \bbbc)$ & $GL(n, \bbbc)$ & $Sp(n, \bbbr)$ \\ CII & $Sp(n, \bbbc)$ & $Sp(p, \bbbc)\times Sp(q, \bbbc)$ & $Sp(p, q)$ \\ DI & $SO(2n, \bbbc)$ & $S(O(2p, \bbbc)\times O(2q, \bbbc))$ & $SO(2p, 2q)$ \\ DI' & $SO(2n, \bbbc)$ & $S(O(2p+1, \bbbc)\times O(2q-1, \bbbc))$ & $SO(2p+1, 2q-1)$ \\ DIII & $SO(2n, \bbbc)$ & $GL(n, \bbbc)$ & $SO^*(2n)$ \\ \end{tabular} \end{petit} \end{table} \begin{note} In \cite{MO} p.155, we should read $GL(n, \bbbc)$ for $\bbbc^\times\times PSL(n, \bbbc)$ on the line of DIII in Table 1. \end{note} Precise description of symbols and many examples are given in \cite{MO}. But we can explain shortly the essencial part as follows. Let $x\in U\subset X$. Then ${\frak a}_x={\rm Lie}(P_x)\cap {\frak s}$ is $\sigma$-stable by the definition of $U$. Let $\Sigma_x$ be the root system of the pair $({\frak g}, {\frak a}_x)$ and $\Sigma_x^+$ the positive system of $\Sigma_x$ corresponding to $P_x$. Let $\Psi_x$ denote the set of simple roots in $\Sigma_x^+$. Then we can take an orthogonal basis $\{e_1,\ldots , e_n\}$ of the dual ${\frak a}_x^*$ of ${\frak a}_x$ such that \[ \Psi_x=\left\{ \begin{array}{lc} \{\alpha_1,\ldots , \alpha_{n-1}\} & \mbox{ if }G=GL(n, \bbbc), \\ \{\alpha_1,\ldots , \alpha_n\} & \mbox{ otherwise,} \end{array} \right. \] where $\alpha_1=e_1-e_2, \ldots , \alpha_{n-1}=e_{n-1}-e_n$ and $\alpha_n=e_n$, $e_{2n}$ or $e_{n-1}+e_n$ if $G=SO(2n+1, \bbbc)$, $Sp(n, \bbbc)$ or $SO(2n, \bbbc)$, respectively. To the left coset $(K\cap H)x$ in $U$, there corresponds a sequence $\varepsilon_1\varepsilon_2\ldots \varepsilon_n$ consisting of the following four kinds of letters. ($\pm$) If $\sigma e_i=e_i$, then $\varepsilon_i=+$ (``a boy'') or $-$ (``a girl''). When $\varepsilon_i=\pm$ and $\varepsilon_j=\pm$ ($i\ne j$), $$\varepsilon_i=\varepsilon_j \iff {\frak g}({\frak a}_x, e_i-e_j)\subset {\rm Lie}(H)\enspace .$$ (a) If $\sigma e_i=e_j$ with $i\ne j$, then we put a small letter (``a family name'') to the couple $(\varepsilon_i, \varepsilon_j)$. (A) If $\sigma e_i=-e_j$ with $i\ne j$, then we put a capital letter to the ``old'' couple $(\varepsilon_i, \varepsilon_j)$. (O) If $\sigma e_i=-e_i$, then $\varepsilon_i=O$ (``the aged'' or ``dead''?). Let $w_i$ be the reflection with respect to the simple root $\alpha_i$ and $P_i=P\cup Pw_iP$ ($P=P_x$) the parabolic subgroup of $G$ for $\alpha_i$. Let $\pi_i$ denote the projection of $X=G/P$ onto $G/P_i$. \section*{Notation} For two $H$-orbits $D_1$ and $D_2$ on $X$, we write $$D_1\stackrel{i}{\rightarrow}D_2 \iff \pi_i(D_1)=\pi_i(D_2) \mbox{ and } \dim D_1<\dim D_2\enspace .$$ %\vspace{1ex} We put here two examples. (You can see 23 figures of examples in \cite{MO}.) \setlength{\unitlength}{1mm} \thicklines \begin{picture}(115,70)(4,0) \put(10,60){\makebox(0,0){$-++$}} \put(30,60){\makebox(0,0){$+-+$}} \put(50,60){\makebox(0,0){$++-$}} \put(20,40){\makebox(0,0){$aa+$}} \put(40,40){\makebox(0,0){$+aa$}} \put(30,20){\makebox(0,0){$a+a$}} \put(11,58){\vector(1,-2){8}} \put(31,58){\vector(1,-2){8}} \put(21,38){\vector(1,-2){8}} \put(29,58){\vector(-1,-2){8}} \put(49,58){\vector(-1,-2){8}} \put(39,38){\vector(-1,-2){8}} \put(12,49){1} \put(22,49){1} \put(36,49){2} \put(46,49){2} \put(22,29){2} \put(36,29){1} \put(30,9){\makebox(0,0){\ixpt{\bf Fig. 1.} $G=GL(3, \bbbc)$}} \put(30,4){\makebox(0,0){\ixpt$H=GL(2, \bbbc)\times GL(1, \bbbc)$}} \put(66,64){\makebox(0,0){$++$}} \put(82,64){\makebox(0,0){$+-$}} \put(98,64){\makebox(0,0){$-+$}} \put(114,64){\makebox(0,0){$--$}} \put(74,48){\makebox(0,0){$+O$}} \put(90,48){\makebox(0,0){$aa$}} \put(106,48){\makebox(0,0){$-O$}} \put(74,32){\makebox(0,0){$O+$}} \put(90,32){\makebox(0,0){$AA$}} \put(106,32){\makebox(0,0){$O-$}} \put(90,16){\makebox(0,0){$OO$}} \put(67,62){\vector(1,-2){6}} \put(83,62){\vector(1,-2){6}} \put(99,62){\vector(1,-2){6}} \put(81,62){\vector(-1,-2){6}} \put(97,62){\vector(-1,-2){6}} \put(113,62){\vector(-1,-2){6}} \put(74,46){\vector(0,-1){12}} \put(90,46){\vector(0,-1){12}} \put(106,46){\vector(0,-1){12}} \put(76,30){\vector(1,-1){12}} \put(90,30){\vector(0,-1){12}} \put(104,30){\vector(-1,-1){12}} \put(67,55){2} \put(76,55){2} \put(84,55){1} \put(95,55){1} \put(103,55){2} \put(111,55){2} \put(72,39){1} \put(88,39){2} \put(107,39){1} \put(79,23){2} \put(88,23){1} \put(99,23){2} \put(90,4){\makebox(0,0){\ixpt{\bf Fig. 2.} $G=Sp(2, \bbbc)$, $H=GL(2, \bbbc)$}} \end{picture} \begin{remark}[2] (\cite{Sp}, \cite{M2}) In complex cases, we can find all the closure relations among $H$-orbits on $X$ from the following two properties. (a) $D_1\stackrel{i}{\rightarrow}D_2 \Rightarrow D_1\subset D_2^{cl}$. (b) $D_1\stackrel{i}{\rightarrow}D_2, D_3\stackrel{i}{\rightarrow}D_4$ and $D_1\subset D_3^{cl}\ \Rightarrow\ D_2\subset D_4^{cl}$. This is proved by the same argument as that of the Bruhat ordering since $$D_1\stackrel{i}{\rightarrow}D_2 \mbox{ and } D_1\stackrel{i}{\to}D_3\ \Rightarrow\ D_2=D_3$$ in complex cases. To find all the closure relations in general real cases, we should follow a rather complicated procedure given in \cite{M2}. \end{remark} \begin{remark}[3] These diagrams of orbits are useful to the study of the asymptotic behavior of spherical functions on semisimple symmetric spaces (\cite{O}) and embeddings of Harish-Chandra modules into principal series (\cite{MO}). \end{remark} \begin{remark} [4] (Problem) If $\Sigma =\Sigma ({\frak g}, {\frak a})$ is classical, then there exists (in principle) a similar (sometimes the same) expression of the $H$-orbits on $X$ as that in a complex case. Give a complete list of such expressions by symbols. (For example, it is proved in \cite{M2} that the diagram of $H^a\setminus X$ is upside-down to that of $H\setminus X$.) \end{remark} \begin{example} {}{}($=$ Exercise). When $G=GL(n, \bbbf)$ and $H=GL(p, \bbbf)\times GL(n-p, \bbbf)$ for a division algebra $\bbbf$ of characteristic $\ne 2$, the diagram of the $H$-orbits on $X$ does not depend on $\bbbf$. \end{example} \begin{problem*} Give good symbols for $H$-orbits on $X$ when $\Sigma$ is exceptional. \end{problem*} %pagestyle{myheadings} \newpage \markright{Uzawa's Stuff (This is to demonstrate changed headlines.)} \section{Uzawa's Function $f$ and Vector Field $v$ on $X$ \protect\\ (Related to Intersections of \protect $H$- and $H^a$-Orbits on $X$)} %pagestyle{headings} Recently, T. Uzawa discovered the following function $f$ and vector field $v$ on $X$ which have very nice properties with respect to $H$-orbits and $H^a$-orbits. Let $Y_0$ be a generic element of ${\frak s}$. Then $Y_0$ defines a minimal parabolic subgroup $P_0$ of $G$ such that $Y_0\in {\frak a}_0={\rm Lie}(P_0)\cap {\frak s}$ and that $Y_0$ is dominant for the positive system of the root system $\Sigma ({\frak g}, {\frak a}_0)$ corresponding to $P_0$. By the natural identification $$G/P_0\cong K/M_0\cong {\rm Ad}(K)Y_0$$ ($K\cap P_0=M_0=$ the centralizer of $Y_0$ in $K$), $X=G/P_0$ is embedded into ${\frak s}$. Let $Y_x$ denote the element in Ad$(K)Y_0$ corresponding to $x\in X$. \begin{definition} (i) We define a function $f$ on $X$ by $f(x)=|Y_x^+|^2=B(Y_x^+, Y_x^+)$ on $X$ where $Y_x^+={1\over 2}(Y_x+\sigma Y_x)$ and $B( , )$ is the Killing form on ${\frak g}$. (ii) A vector field $v$ on $X$ is defined by $v_x=$ the (infinitesimal) $Y_x^+$-action at $x$ for $x\in X$. (iii) $\Phi_t$ ($t\in \bbbr$) is the one-parameter group of transformations of $X$ for the vector field $v$. (iv) $\Phi_{\pm\infty}(x)=\lim_{t\to\pm\infty}\Phi_t(x)$ for $x\in X$. \end{definition} \begin{remark}[5] The vector field $v$ is the gradient of the function $f$ with respect to the $K$-invariant Riemannian metric on $X=K/M_0$ induced from the inner product $(Z, Z')=B([Z, Y_0], Z'_{\frak s})$ on ${\frak k}^{\perp{\frak m}_0}$ where $Z'_{\frak s}$ is the element in ${\frak s}$ such that $Z'_{\frak s}-Z'\in {\rm Lie}(P_0)$. \end{remark} \begin{remark}[6] If the real rank of $G$ is larger than one, then $f$ and $v$ depend essencially (not constant multiple) on the choice of $Y_0$. \end{remark} \begin{example} {}{}{\rm (continued from Example 1.9)} Take $$Y_0=\pmatrix{1 & 0 \cr 0 & -1}\in {\frak s}=\biggl\{\pmatrix{z & x+iy \cr x-iy & -z} \mid x, y, z\in \bbbr \biggr\}\enspace .$$ Since $P_0$ is the subgroup of $G$ consisting of upper triangular matrices, $eP_0$ corresponds to $\infty$ in $P^1(\bbbc)=\bbbc\cup \{\infty\}$ and $$kP_0\mapsto \pmatrix{a & b \cr -\bar b & \bar a}\infty = {a \over -\bar b}\quad \mbox{ for }\quad k= \pmatrix{a & b \cr -\bar b & \bar a}\in K\enspace .$$ On the other hand, \begin{eqnarray*} \pmatrix{a & b \cr -\bar b & \bar a} \pmatrix{1 & 0 \cr 0 & -1} \pmatrix{a & b \cr -\bar b & \bar a}^{-1} & = & \pmatrix{a & -b \cr -\bar b & -\bar a} \pmatrix{\bar a & -b \cr \bar b & a} \\ & = & \pmatrix{a\bar a -b\bar b & -2ab \cr -2\bar a\bar b & -a\bar a +b\bar b}\enspace . \end{eqnarray*} So Ad$(K)Y_0$ is the sphere given by $x^2+y^2+z^2=1$ and the function $f$ is given by $z^2$. Two points $\{\infty\}$, $\{0\}$ and the unit circle in $P^1(\bbbc)$ correspond to $(0, 0, 1)$, $(0, 0, -1)$ and the circle defined by $z=0$, respectively, in Ad$(K)Y_0$. \end{example} \noindent \begin{theorem} {\rm\cite{U}} (i) $v$ is tangent to $H$-orbits and $H^a$-orbits. (ii) $(df)_x=0 \iff v_x=0 \iff x$ is special. (iii) Let $D$ be an $H$-orbit on $X$. Then there exists $m=\min_{x\in D}f(x)$ and for $x\in D$, $$f(x)=m \iff x \enspace \mbox{is special}\enspace .$$ (iv) $\Phi_{-\infty}(D)=D\cap U$ for $H$-orbits $D$ on $X$. \end{theorem} \begin{corollary}(1) {\em \cite{M3} }(a) $D\cap D^a=(K\cap H)x$ for an $x\in U$. (b) For two $H$-orbits $D$ and $E$ on $X$, $$D^{cl}\supset E \iff D\cap E^a\ne \phi \iff D^a\subset (E^a)^{cl}\enspace .$$ \end{corollary} \begin{proof} (\cite{U}) (a) Let $x\in D\cap D^a$. We have only to show that $x\in U$ by Theorem 1. Let $m$ be the value of the function $f$ at the points in $D\cap U$ ($=D^a\cap U$). Suppose that $x\notin U$. Then $f(x)>m$ by (iii). Since the function for the $H^a$-orbit structure is $|Y_0|^2-f(x)$, we have also $f(x)2$) and $H=\theta N$ (where $N$ is the unipotent radical of $P$), then $\#(H\setminus G/P)=2$ and $ \#(H_\bbbc \setminus G_\bbbc /P_\bbbc )=\infty$. \end{remark} \begin{thebibliography}{[M-O]} \bibitem[A]{A} Aomoto, K.: On some double coset decompositions of complex semi-simple Lie groups. J. Math. Soc. Japan {\bf 18} (1966) 1--44 \bibitem[Be]{Be} Berger, M.: Les \'{e}space symm\'{e}triques non compacts. Ann. Sci. \'{E}cole Norm. Sup. {\bf 74} (1957) 85--177 \bibitem[Br1]{Br1} Brion, M.: Quelques propri\'{e}t\'{e}s des espaces homog\`{e}nes sph\'{e}riques. Manuscripta Math. {\bf 55} (1986) 191--198 \bibitem[Br2]{Br2} Brion, M.: Classification des espaces homog\`{e}nes sph\'{e}riques. Comp. Math. {\bf 63} (1987) 189--208 \bibitem[F]{F} Flensted-Jensen, M.: Discrete series for semisimple symmetric spaces. Ann. Math. {\bf 111} (1980) 253--311 \bibitem[H]{H} Hecht, H., Mili\v{c}i\'{c}, D., Schmid, W., Wolf, J. A.: Localizations and standard modules for real semisimple Lie groups I: The duality theorem, Invent. math. {\bf 90} (1987) 297--332 \bibitem[K]{K} Kr\"{a}mer, M.: Sph\"{a}rische Untergruppen in Kompakten zusammenh\"{a}ngenden Liegruppen. Comp. Math. {\bf 38} (1979) 129-153 \bibitem[M1]{M1} Matsuki, T.: The orbits of affine symmetric spaces under the action of minimal parabolic subgroups. J. Math. Soc. Japan {\bf 31} (1979) 331--357 \bibitem[M2]{M2} Matsuki, T.: Closure relations for orbits on affine symmetric spaces under the action of minimal parabolic subgroups. Adv. Studies Pure Math. {\bf 14} (1988) 541--559 \bibitem[M3]{M3} Matsuki, T.: Closure relations for orbits on affine symmetric spaces under the action of parabolic subgroups. Intersections of associated orbits. Hiroshima Math. J. {\bf 18} (1988) 59--67 \bibitem[M-O]{MO} Matsuki, T., Oshima, T.: Embeddings of discrete series into principal series. In: The Orbit Method in Representation Theory. Birkh\"{a}user, Boston 1990, pp. 147--175 \bibitem[O]{O} Oshima, T.: Asymptotic behavior of spherical functions on semisimple symmetric spaces. Adv. Studies Pure Math. {\bf 14} (1988) 561--601 \bibitem[O-M]{O-M} Oshima, T., Matsuki, T.: A description of discrete series for semisimple symmetric spaces, Adv. Studies Pure Math. {\bf 4} (1984) 331--390 \bibitem[R]{R} Rossmann, W.: The structure of semisimple symmetric spaces. Canad. J. Math. {\bf 31} (1979) 157--180 \bibitem[S]{Sp} Springer, T. A.: Some results on algebraic groups with involutions. Adv. Studies Pure Math. {\bf 6} (1984) 525--534 \bibitem[U]{U} Uzawa, T.: Invariant hyperfunction sections of line bundles. Preprint 1990 \bibitem[V]{V} Vinberg, E. B.: Complexity of actions of reductive groups. Funct. Anal. Appl. {\bf 20} (1985) 1--11 \bibitem[W]{W} Wolf, J. A.: Finiteness of orbit structure for real flag manifolds, Geometriae Dedicata {\bf 3} (1974) 377--384 \end{thebibliography} \end{document}